
www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL 4.6 API Reference Guide Page 1
OpenGL® is the only cross-platform graphics API that enables
developers to create high-performance, visually-compelling graphics
software applications, in markets such as CAD, content creation,
energy, entertainment, game development, manufacturing, medical,
and virtual reality.
Specifications are available at www.khronos.org/opengl

• See FunctionName refers to functions on this reference card.
• [n.n.n] and [Table n.n] refer to sections and tables in the OpenGL 4.6 core specification.
• [n.n.n] refers to sections in the OpenGL Shading Language 4.60.1 specification.

OpenGL Command Syntax [2.2]
GL commands are formed from a return type, a name, and optionally up to 4 characters
(or character pairs) from the Command Letters table (to the left), as shown by the prototype:

 return-type Name{1234}{b s i i64 f d ub us ui ui64}{v} ([args ,] T arg1 , . . . , T argN [, args]);

The arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.

The argument type T and the number N of arguments may be indicated by the command name
suffixes. N is 1, 2, 3, or 4 if present. If “v” is present, an array of N items is passed by a pointer.
For brevity, the OpenGL documentation and this reference may omit the standard prefixes.

The actual names are of the forms: glFunctionName(), GL_CONSTANT, GLtype

Command Execution [2.3]
OpenGL Errors [2.3.1]
enum GetError(void);

Graphics Reset Recovery [2.3.2]
enum GetGraphicsResetStatus(void);

Returns: NO_ERROR, GUILTY_CONTEXT_RESET,
{INNOCENT, UNKNOWN}_CONTEXT_RESET

GetIntegerv(RESET_NOTIFICATION_STRATEGY);
Returns: NO_RESET_NOTIFICATION,

LOSE_CONTEXT_ON_RESET

Flush and Finish [2.3.3]
void Flush(void); void Finish(void);

Floating-Point Numbers [2.3.4]
16-Bit 1-bit sign, 5-bit exp., 10-bit mant.
Unsigned 11-Bit no sign bit, 5-bit exp., 6-bit mant.
Unsigned 10-Bit no sign bit, 5-bit exp., 5-bit mant.

Command Letters [Tables 2.1, 2.2]
Where a letter denotes a type in a function
name, T within the prototype is the same type.

b - byte (8 bits) ub - ubyte (8 bits)
s - short (16 bits) us - ushort (16 bits)
i - int (32 bits) ui - uint (32 bits)
i64 - int64 (64 bits) ui64 - uint64 (64 bits)
f - float (32 bits) d - double (64 bits)

Shaders and Programs
Shader Objects [7.1-2]
uint CreateShader(enum type);

type: {COMPUTE, FRAGMENT}_SHADER,
{GEOMETRY, VERTEX}_SHADER,
TESS_{EVALUATION, CONTROL}_SHADER

void ShaderSource(uint shader, sizei count,
const char * const * string, const int
*length);

void CompileShader(uint shader);

void ReleaseShaderCompiler(void);

void DeleteShader(uint shader);

boolean IsShader(uint shader);
void ShaderBinary(sizei count,

const uint *shaders, enum binaryformat,
const void *binary, sizei length);

void SpecializeShader(uint shader,
const char *pEntryPoint,
uint numSpecializationConstants,
const uint *pConstantIndex,
const int *pConstantValue);

Program Objects [7.3]
uint CreateProgram(void);
void AttachShader(uint program, uint shader);

(Continued on next page)

Synchronization
Sync Objects and Fences [4.1]
void DeleteSync(sync sync);
sync FenceSync(enum condition, bitfield flags);

condition: SYNC_GPU_COMMANDS_COMPLETE
flags: must be 0

Timer Queries [4.3]
Timer queries track the amount of time needed
to fully complete a set of GL commands.

void QueryCounter(uint id, TIMESTAMP);
void GetIntegerv(TIMESTAMP, int *data);
void GetInteger64v(TIMESTAMP, int64 *data);

Buffer Objects [6]
void GenBuffers(sizei n, uint *buffers);
void CreateBuffers(sizei n, uint *buffers);
void DeleteBuffers(sizei n, const uint *buffers);

Create and Bind Buffer Objects [6.1]
void BindBuffer(enum target, uint buffer);

target: [Table 6.1] {ARRAY, UNIFORM}_BUFFER,
{ATOMIC_COUNTER, QUERY}_BUFFER,
COPY_{READ, WRITE}_BUFFER,
{DISPATCH, DRAW}_INDIRECT_BUFFER,
{ELEMENT_ARRAY, TEXTURE}_BUFFER,
PIXEL_[UN]PACK_BUFFER,
{PARAMETER, SHADER_STORAGE}_BUFFER,
TRANSFORM_FEEDBACK_BUFFER

void BindBufferRange(enum target,
uint index, uint buffer, intptr offset,
sizeiptr size);

target: ATOMIC_COUNTER_BUFFER,
{SHADER_STORAGE, UNIFORM}_BUFFER,
TRANSFORM_FEEDBACK_BUFFER

void BindBufferBase(enum target,
uint index, uint buffer);

 target: See BindBufferRange

void BindBuffersRange(enum target,
uint first, sizei count, const uint *buffers,
const intptr *offsets, const sizeiptr *size);

 target: See BindBufferRange

void BindBuffersBase(enum target,
uint first, sizei count,
const uint *buffers);

 target: See BindBufferRange

Create/Modify Buffer Object Data [6.2]
void BufferStorage(enum target,

sizeiptr size, const void *data,
bitfield flags);

target: See BindBuffer
flags: Bitwise OR of MAP_{READ, WRITE}_BIT,

{DYNAMIC, CLIENT}_STORAGE_BIT,
MAP_{COHERENT, PERSISTENT}_BIT

void NamedBufferStorage(uint buffer,
sizeiptr size, const void *data,
bitfield flags);

flags: See BufferStorage

void BufferData(enum target, sizeiptr size,
const void *data, enum usage);

target: See BindBuffer
usage: DYNAMIC_{DRAW, READ, COPY},

{STATIC, STREAM}_{DRAW, READ, COPY}

void NamedBufferData(uint buffer, sizeiptr
size, const void *data, enum usage);

void BufferSubData(enum target,
intptr offset, sizeiptr size,
const void *data);

target: See BindBuffer

void NamedBufferSubData(uint buffer,
intptr offset, sizeiptr size,
const void *data);

void ClearBufferSubData(enum target,
enum internalFormat, intptr offset,
sizeiptr size, enum format, enum type,
const void *data);

target: See BindBuffer
internalformat: See TexBuffer on pg. 3 of this card
format: RED, GREEN, BLUE, RG, RGB, RGBA, BGR,

BGRA, {RED, GREEN, BLUE, RG, RGB}_INTEGER,
{RGBA, BGR, BGRA} _INTEGER, STENCIL_INDEX,
DEPTH_{COMPONENT, STENCIL}

void ClearNamedBufferSubData(
uint buffer, enum internalFormat,
intptr offset, sizeiptr size, enum format,
enum type, const void *data);

internalformat, format, type: See
ClearBufferSubData

void ClearBufferData(enum target,
enum internalformat, enum format,
enum type, const void *data);

target, internalformat, format: See
ClearBufferSubData

void ClearNamedBufferData(uint buffer,
enum internalformat, enum format,
enum type, const void *data);

internalformat, format, type: See ClearBufferData

Map/Unmap Buffer Data [6.3]
void *MapBufferRange(enum target,

intptr offset, sizeiptr length,
bitfield access);

target: See BindBuffer
access: The Bitwise OR of MAP_X_BIT, where X may

be READ, WRITE, PERSISTENT, COHERENT,
INVALIDATE_{BUFFER, RANGE},
FLUSH_EXPLICIT, UNSYNCHRONIZED

void *MapNamedBufferRange(uint buffer,
intptr offset, sizeiptr length,
bitfield access);

target: See BindBuffer
access: See MapBufferRange

void *MapBuffer(enum target, enum access);
access: See MapBufferRange

void *MapNamedBuffer(uint buffer,
enum access);

access: See MapBufferRange

void FlushMappedBufferRange(intptr offset,
sizeiptr length);

void FlushMappedNamedBufferRange(
uint buffer, intptr offset, sizeiptr length);

boolean UnmapBuffer(enum target);
target: See BindBuffer

boolean UnmapNamedBuffer(uint buffer);

Invalidate Buffer Data [6.5]
void InvalidateBufferSubData(uint buffer,

intptr offset, sizeiptr length);

void InvalidateBufferData(uint buffer);

Buffer Object Queries [6, 6.7]
boolean IsBuffer(uint buffer);

void GetBufferSubData(enum target,
intptr offset, sizeiptr size, void *data);

target: See BindBuffer

void GetNamedBufferSubData(uint buffer,
intptr offset, sizeiptr size, void *data);

void GetBufferParameteri[64]v(
enum target, enum pname, int[64]*data);

target: See BindBuffer
pname: [Table 6.2] BUFFER_SIZE, BUFFER_USAGE,

BUFFER_{ACCESS[_FLAGS]}, BUFFER_MAPPED,
BUFFER_MAP_{OFFSET, LENGTH},
BUFFER_{IMMUTABLE_STORAGE, ACCESS_FLAGS}

void GetNamedBufferParameteri[64]v(
uint buffer, enum pname, int[64]*data);

void GetBufferPointerv(enum target,
enum pname, const void **params);

target: See BindBuffer
pname: BUFFER_MAP_POINTER

void GetNamedBufferPointerv(uint buffer,
enum pname, const void **params);

pname: BUFFER_MAP_POINTER

Copy Between Buffers [6.6]
void CopyBufferSubData(enum readTarget,

enum writeTarget, intptr readOffset,
intptr writeOffset, sizeiptr size);

readTarget and writeTarget: See BindBuffer

void CopyNamedBufferSubData(
uint readBuffer, uint writeBuffer,
intptr readOffset, intptr writeOffset,
sizeiptr size);

Asynchronous Queries [4.2, 4.2.1]
void GenQueries(sizei n, uint *ids);

void CreateQueries(enum target, sizei n,
uint *ids);

target: See BeginQuery, plus TIMESTAMP

void DeleteQueries(sizei n, const uint *ids);
void BeginQuery(enum target, uint id);

target: ANY_SAMPLES_PASSED[_CONSERVATIVE],
PRIMITIVES_GENERATED, SAMPLES_PASSED,
TIME_ELAPSED, {PRIMITIVES, VERTICES}_SUBMITTED,
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN,
TRANSFORM_FEEDBACK_[STREAM_]OVERFLOW,
{COMPUTE, VERTEX}_SHADER_INVOCATIONS,
{FRAGMENT, GEOMETRY}_SHADER_INVOCATIONS,
TESS_EVALUATION_SHADER_INVOCATIONS,
TESS_CONTROL_SHADER_PATCHES,
GEOMETRY_SHADER_PRIMITIVES_EMITTED,
CLIPPING_{INPUT, OUTPUT}_PRIMITIVES

void BeginQueryIndexed(enum target,
uint index, uint id);

target: See BeginQuery

void EndQuery(enum target);

void EndQueryIndexed(enum target,
uint index);

boolean IsQuery(uint id);
void GetQueryiv(enum target, enum pname,

int *params);
target: See BeginQuery, plus TIMESTAMP
pname: CURRENT_QUERY, QUERY_COUNTER_BITS

void GetQueryIndexediv(enum target,
uint index, enum pname, int *params);

target: See BeginQuery, plus TIMESTAMP
pname: CURRENT_QUERY, QUERY_COUNTER_BITS

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id,
enum pname, uint *params);

void GetQueryObjecti64v(uint id,
enum pname, int64 *params);

void GetQueryObjectui64v(uint id,
enum pname, uint64 *params);

pname: QUERY_TARGET,
QUERY_RESULT[_NO_WAIT, _AVAILABLE]

Waiting for Sync Objects [4.1.1]
enum ClientWaitSync(sync sync,

bitfield flags, uint64 timeout_ns);
flags: SYNC_FLUSH_COMMANDS_BIT, or zero

void WaitSync(sync sync, bitfield flags,
uint64 timeout);

timeout: TIMEOUT_IGNORED

Sync Object Queries [4.1.3]
void GetSynciv(sync sync, enum pname,

sizei bufSize, sizei *length, int *values);
pname: OBJECT_TYPE, SYNC_{STATUS, CONDITION, FLAGS}

boolean IsSync(sync sync);

SamuelHuang
Highlight

SamuelHuang
Highlight

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

Page 2 OpenGL 4.6 API Reference Guide
Shaders and Programs (cont.)

void DetachShader(uint program,
uint shader);

void LinkProgram(uint program);

void UseProgram(uint program);

uint CreateShaderProgramv(enum type,
sizei count, const char * const * strings);

void ProgramParameteri(uint program,
enum pname, int value);

pname: PROGRAM_SEPARABLE,
PROGRAM_BINARY_RETRIEVABLE_HINT

value: TRUE, FALSE

void DeleteProgram(uint program);

boolean IsProgram(uint program);

Program Interfaces [7.3.1]
void GetProgramInterfaceiv(uint program,

enum programInterface, enum pname,
int *params);

programInterface:
ATOMIC_COUNTER_BUFFER, BUFFER_VARIABLE,
UNIFORM[_BLOCK], PROGRAM_{INPUT, OUTPUT},
SHADER_STORAGE_BLOCK,
{GEOMETRY, VERTEX}_SUBROUTINE,
TESS_{CONTROL, EVALUATION}_SUBROUTINE,
{FRAGMENT, COMPUTE}_SUBROUTINE,
TESS_CONTROL_SUBROUTINE_UNIFORM,
TESS_EVALUATION_SUBROUTINE_UNIFORM,
{GEOMETRY, VERTEX}_SUBROUTINE_UNIFORM,
{FRAGMENT, COMPUTE}_SUBROUTINE_UNIFORM,
TRANSFORM_FEEDBACK_{BUFFER, VARYING}

pname: ACTIVE_RESOURCES, MAX_NAME_LENGTH,
MAX_NUM_ACTIVE_VARIABLES,
MAX_NUM_COMPATIBLE_SUBROUTINES

uint GetProgramResourceIndex(
uint program, enum programInterface,
const char *name);

void GetProgramResourceName(
uint program, enum programInterface,
uint index, sizei bufSize, sizei *length,
char *name);

void GetProgramResourceiv(uint program,
enum programInterface, uint index,
sizei propCount, const enum *props,
sizei bufSize, sizei *length, int *params);

*props: [See Table 7.2]

int GetProgramResourceLocation(
uint program, enum programInterface,
const char *name);

int GetProgramResourceLocationIndex(
uint program, enum programInterface,
const char *name);

Program Pipeline Objects [7.4]
void GenProgramPipelines(sizei n,

uint *pipelines);

void DeleteProgramPipelines(sizei n,
const uint *pipelines);

boolean IsProgramPipeline(uint pipeline);

void BindProgramPipeline(uint pipeline);

void CreateProgramPipelines(sizei n,
uint *pipelines);

void UseProgramStages(uint pipeline,
bitfield stages, uint program);

stages: ALL_SHADER_BITS or the bitwise OR of
TESS_{CONTROL, EVALUATION}_SHADER_BIT,
{VERTEX, GEOMETRY, FRAGMENT}_SHADER_BIT,
COMPUTE_SHADER_BIT

void ActiveShaderProgram(uint pipeline,
uint program);

Program Binaries [7.5]
void GetProgramBinary(uint program,

sizei bufSize, sizei *length,
enum *binaryFormat, void *binary);

void ProgramBinary(uint program,
enum binaryFormat, const void *binary,
sizei length);

Uniform Variables [7.6]
int GetUniformLocation(uint program,

const char *name);

void GetActiveUniformName(uint program,
uint uniformIndex, sizei bufSize,
sizei *length, char *uniformName);

void GetUniformIndices(uint program,
sizei uniformCount,
const char * const *uniformNames,
uint *uniformIndices);

void GetActiveUniform(uint program,
uint index, sizei bufSize, sizei *length,
int *size, enum *type, char *name);

*type returns: DOUBLE_{VECn, MATn, MATmxn},
DOUBLE, FLOAT_{VECn, MATn, MATmxn}, FLOAT,
INT, INT_VECn, UNSIGNED_INT[_VECn], BOOL,
BOOL_VECn, or any value in [Table 7.3]

void GetActiveUniformsiv(uint program,
sizei uniformCount,
const uint *uniformIndices, enum pname,
int *params);

pname: [Table 7.6]
UNIFORM_{NAME_LENGTH, TYPE, OFFSET},
UNIFORM_{SIZE, BLOCK_INDEX, UNIFORM},
UNIFORM_{ARRAY, MATRIX}_STRIDE,
UNIFORM_IS_ROW_MAJOR,
UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX

uint GetUniformBlockIndex(uint program,
const char *uniformBlockName);

void GetActiveUniformBlockName(
uint program, uint uniformBlockIndex,
sizei bufSize, sizei length,
char *uniformBlockName);

void GetActiveUniformBlockiv(
uint program, uint uniformBlockIndex,
enum pname, int *params);

pname: UNIFORM_BLOCK_{BINDING, DATA_SIZE},
UNIFORM_BLOCK_NAME_LENGTH,
UNIFORM_BLOCK_ACTIVE_UNIFORMS[_INDICES],
UNIFORM_BLOCK_REFERENCED_BY_X_SHADER,
where X may be one of VERTEX, FRAGMENT,
COMPUTE, GEOMETRY, TESS_CONTROL, or
TESS_EVALUATION [Table 7.7]

void GetActiveAtomicCounterBufferiv(
uint program, uint bufferIndex,
enum pname, int *params);

pname: See GetActiveUniformBlockiv, however
replace the prefix UNIFORM_BLOCK_ with
ATOMIC_COUNTER_BUFFER_

Load Uniform Vars. in Default Uniform Block
void Uniform{1234}{i f d ui}(int location,

T value);

void Uniform{1234}{i f d ui}v(int location,
sizei count, const T *value);

void UniformMatrix{234}{f d}v(
int location, sizei count, boolean transpose,
const float *value);

void
UniformMatrix{2x3,3x2,2x4,4x2,3x4, 4x3}
{fd}v(int location, sizei count,
boolean transpose, const float *value);

void ProgramUniform{1234}{i f d}(
uint program, int location, T value);

void ProgramUniform{1234}{i f d}v(
uint program, int location, sizei count,
const T *value);

void ProgramUniform{1234}uiv(
uint program, int location, sizei count,
const T *value);

void ProgramUniform{1234}ui(
uint program, int location, T value);

void ProgramUniformMatrix{234}{f d}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

void ProgramUniformMatrixf{2x3,3x2,2x4,
4x2, 3x4, 4x3}{f d}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

Uniform Buffer Object Bindings
void UniformBlockBinding(uint program,

uint uniformBlockIndex,
uint uniformBlockBinding);

Shader Buffer Variables [7.8]
void ShaderStorageBlockBinding(

uint program, uint storageBlockIndex,
uint storageBlockBinding);

Subroutine Uniform Variables [7.9]
Parameter shadertype for the functions in this
section may be {COMPUTE, VERTEX}_SHADER,
TESS_{CONTROL, EVALUATION}_SHADER, or
{FRAGMENT, GEOMETRY}_SHADER

int GetSubroutineUniformLocation(
uint program, enum shadertype,
const char *name);

uint GetSubroutineIndex(uint program,
enum shadertype, const char *name);

void GetActiveSubroutineName(
uint program, enum shadertype,
uint index, sizei bufsize, sizei *length,
char *name);

void GetActiveSubroutineUniformName(
uint program, enum shadertype,
uint index, sizei bufsize, sizei *length,
char *name);

void GetActiveSubroutineUniformiv(
uint program, enum shadertype,
uint index, enum pname, int *values);

pname: [NUM_]COMPATIBLE_SUBROUTINES

void UniformSubroutinesuiv(
enum shadertype, sizei count,
const uint *indices);

Shader Memory Access [7.12.2]
See diagram on page 6 for more information.

void MemoryBarrier(bitfield barriers);
barriers: ALL_BARRIER_BITS or the OR of

X_BARRIER_BIT where X may be: QUERY_BUFFER,
VERTEX_ATTRIB_ARRAY, ELEMENT_ARRAY,
UNIFORM, TEXTURE_FETCH, BUFFER_UPDATE,
SHADER_IMAGE_ACCESS, COMMAND,
PIXEL_BUFFER, TEXTURE_UPDATE, FRAMEBUFFER,
TRANSFORM_FEEDBACK, ATOMIC_COUNTER,
SHADER_STORAGE, CLIENT_MAPPED_BUFFER,

void MemoryBarrierByRegion(bitfield
barriers);

barriers: ALL_BARRIER_BITS or the OR of
X_BARRIER_BIT where X may be:
ATOMIC_COUNTER, FRAMEBUFFER,
SHADER_IMAGE_ACCESS, SHADER_STORAGE,
TEXTURE_FETCH, UNIFORM

Shader and Program Queries [7.13]
void GetShaderiv(uint shader, enum pname,

int *params);
pname: SHADER_TYPE, INFO_LOG_LENGTH,

{DELETE, COMPILE}_STATUS, COMPUTE_SHADER,
SHADER_SOURCE_LENGTH, SPIR_V_BINARY

void GetProgramiv(uint program,
enum pname, int *params);

pname: ACTIVE_ATOMIC_COUNTER_BUFFERS,
ACTIVE_ATTRIBUTES,
ACTIVE_ATTRIBUTE_MAX_LENGTH,
ACTIVE_UNIFORMS, ACTIVE_UNIFORM_BLOCKS,
ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH,
ACTIVE_UNIFORM_MAX_LENGTH,
ATTACHED_SHADERS, VALIDATE_STATUS,
COMPUTE_WORK_GROUP_SIZE, DELETE_STATUS,
GEOMETRY_{INPUT, OUTPUT}_TYPE,
GEOMETRY_SHADER_INVOCATIONS,
GEOMETRY_VERTICES_OUT, INFO_LOG_LENGTH,
LINK_STATUS, PROGRAM_SEPARABLE,
PROGRAM_BINARY_RETRIEVABLE_HINT,
TESS_CONTROL_OUTPUT_VERTICES,
TESS_GEN_{MODE, SPACING},
TESS_GEN_{VERTEX_ORDER, POINT_MODE},
TRANSFORM_FEEDBACK_BUFFER_MODE,
TRANSFORM_FEEDBACK_VARYINGS,
TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH

void GetProgramPipelineiv(uint pipeline,
enum pname, int *params);

pname: ACTIVE_PROGRAM, VALIDATE_STATUS,
{VERTEX, FRAGMENT, GEOMETRY}_SHADER,
TESS_{CONTROL, EVALUATION}_SHADER,
INFO_LOG_LENGTH, COMPUTE_SHADER

void GetAttachedShaders(uint program,
sizei maxCount, sizei *count,
uint *shaders);

void GetShaderInfoLog(uint shader,
sizei bufSize, sizei *length, char *infoLog);

void GetProgramInfoLog(uint program,
sizei bufSize, sizei *length, char *infoLog);

void GetProgramPipelineInfoLog(
uint pipeline, sizei bufSize,
sizei *length, char *infoLog);

void GetShaderSource(uint shader,
sizei bufSize, sizei *length, char *source);

void GetShaderPrecisionFormat(
enum shadertype, enum precisiontype,
int *range, int *precision);

shadertype: {VERTEX, FRAGMENT}_SHADER
precisiontype: {LOW, MEDIUM, HIGH}_{FLOAT, INT}

void GetUniform{f d i ui}v(uint program,
int location, T *params);

void GetnUniform{f d i ui}v(uint program,
int location, sizei bufSize, T *params);

void GetUniformSubroutineuiv(
enum shadertype, int location,
uint *params);

void GetProgramStageiv(uint program,
enum shadertype, enum pname,
int *values);

pname: ACTIVE_SUBROUTINES,
ACTIVE_SUBROUTINE_X where X may be
UNIFORMS, MAX_LENGTH, UNIFORM_LOCATIONS,
UNIFORM_MAX_LENGTH

Textures and Samplers [8]
void ActiveTexture(enum texture);

texture: TEXTUREi (where i is
[0, max(MAX_TEXTURE_COORDS,
MAX_COMBINED_TEXTURE_IMAGE_UNITS)-1])

Texture Objects [8.1]
void GenTextures(sizei n, uint *textures);

void BindTexture(enum target, uint texture);
target: TEXTURE_{1D, 2D}[_ARRAY],

TEXTURE_{3D, RECTANGLE, BUFFER},
TEXTURE_CUBE_MAP[_ARRAY],
TEXTURE_2D_MULTISAMPLE[_ARRAY]

void BindTextures(uint first, sizei count,
const uint *textures);

target: See BindTexture

void BindTextureUnit(uint unit, uint texture);

void CreateTextures(enum target, sizei n,
uint *textures);

target: See BindTexture

void DeleteTextures(sizei n,
const uint *textures);

boolean IsTexture(uint texture);

Sampler Objects [8.2]
void GenSamplers(sizei count, uint *samplers);

void CreateSamplers(sizei n, uint *samplers);

void BindSampler(uint unit, uint sampler);

void BindSamplers(uint first, sizei count,
const uint *samplers);

void SamplerParameter{i f}(uint sampler,
enum pname, T param);

void SamplerParameter{i f}v(uint sampler,
enum pname, const T *param);

void SamplerParameterI{i ui}v(uint sampler,
enum pname, const T *params);

pname: for all SamplerParameter* functions:
TEXTURE_X where X may be WRAP_{S, T, R},
{MIN, MAG}_FILTER, {MIN, MAX}_LOD,
BORDER_COLOR, LOD_BIAS, MAX_ANISOTROPY
COMPARE_{MODE, FUNC} [Table 23.18]

void DeleteSamplers(sizei count,
const uint *samplers);

boolean IsSampler(uint sampler);

Sampler Queries [8.3]
void GetSamplerParameter{i f}v(

uint sampler, enum pname, T *params);
pname: See SamplerParameter{if}

void GetSamplerParameterI{i ui}v(
uint sampler, enum pname, T *params);

pname: See SamplerParameter{if}

Pixel Storage Modes [8.4.1]
void PixelStore{i f}(enum pname, T param);

pname: [Tables 8.1, 18.1] [UN]PACK_X where X may
be SWAP_BYTES, LSB_FIRST, ROW_LENGTH,
SKIP_{IMAGES, PIXELS, ROWS}, ALIGNMENT,
IMAGE_HEIGHT, COMPRESSED_BLOCK_WIDTH,
COMPRESSED_BLOCK_{HEIGHT, DEPTH, SIZE}

(Continued on next page)

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL 4.6 API Reference Guide Page 3
Textures and Samplers (cont.)

Texture Image Spec. [8.5]
void TexImage3D(enum target, int level,

int internalformat, sizei width, sizei height,
sizei depth, int border, enum format,
enum type, const void *data);

target: [PROXY_]TEXTURE_CUBE_MAP_ARRAY,
[PROXY_]TEXTURE_2D_ARRAY, [PROXY_]TEXTURE_3D

internalformat: STENCIL_INDEX, RED,
DEPTH_{COMPONENT, STENCIL}, RG, RGB, RGBA,
COMPRESSED_{RED, RG, RGB, RGBA, SRGB,
SRGB_ALPHA), a sized internal format from
[Tables 8.12 - 8.13], or a COMPRESSED_ format
from [Table 8.14]

format: DEPTH_{COMPONENT, STENCIL}, RED,
GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA,
{BGRA, RED, GREEN, BLUE}_INTEGER,
{RG, RGB, RGBA, BGR}_INTEGER,
STENCIL_INDEX, [Table 8.3]

type: [UNSIGNED_]{BYTE, SHORT, INT},
[HALF_]FLOAT, or a value from [Table 8.2]

void TexImage2D(enum target, int level,
int internalformat, sizei width,
sizei height, int border, enum format,
enum type, const void *data);

target: [PROXY_]TEXTURE_{2D, RECTANGLE},
[PROXY_]TEXTURE_{1D_ARRAY, CUBE_MAP},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}

internalformat, format, type: See TexImage3D

void TexImage1D(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, const void *data);

target: TEXTURE_1D, PROXY_TEXTURE_1D
type, internalformat, format: See TexImage3D

Alternate Texture Image Spec. [8.6]
void CopyTexImage2D(enum target,

int level, enum internalformat, int x,
int y, sizei width, sizei height, int border);

target: TEXTURE_{2D, RECTANGLE, 1D_ARRAY},
TEXTURE_CUBE_MAP_{POSITIVE, NEGATIVE}_{X, Y, Z}

internalformat: See TexImage3D

void CopyTexImage1D(enum target,
int level, enum internalformat, int x,
int y, sizei width, int border);

target: TEXTURE_1D
internalformat: See TexImage3D

void TexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type,
const void *data);

target: TEXTURE_3D, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP_ARRAY

format, type: See TexImage3D

void TexSubImage2D(enum target,
int level, int xoffset, int yoffset, sizei width,
sizei height, enum format, enum type,
const void *data);

target: See CopyTexImage2D
format, type: See TexImage3D

void TexSubImage1D(enum target, int level,
int xoffset, sizei width, enum format,
enum type, const void *data);

target, format, type: See CopyTexImage1D

 void CopyTexSubImage3D(enum target,
int level, int xoffset, int yoffset, int zoffset,
int x, int y, sizei width, sizei height);

target: See TexSubImage3D

void CopyTexSubImage2D(enum target,
int level, int xoffset, int yoffset, int x,
int y, sizei width, sizei height);

target: See TexImage2D

void CopyTexSubImage1D(enum target,
int level, int xoffset, int x, int y, sizei width);

target: See TexSubImage1D

void TextureSubImage3D(uint texture, int level,
int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type,
const void *pixels);

format, type: See TexImage3D

void TextureSubImage2D(uint texture, int level,
int xoffset, int yoffset, sizei width,
sizei height, enum format, enum type,
const void *pixels);

format, type: See TexImage3D

void TextureSubImage1D(uint texture, int level,
int xoffset, sizei width, enum format,
enum type, const void *pixels);

format, type: See TexImage3D

void CopyTextureSubImage3D(uint texture,
int level, int xoffset, int yoffset, int zoffset,
int x, int y, sizei width, sizei height);

void CopyTextureSubImage2D(uint texture,
int level, int xoffset, int yoffset, int x,
int y, sizei width, sizei height);

void CopyTextureSubImage1D(uint texture,
int level, int xoffset, int x, int y, sizei width);

Compressed Texture Images [8.7]
void CompressedTexImage3D(enum target,

int level, enum internalformat, sizei width,
sizei height, sizei depth, int border,
sizei imageSize, const void *data);

target: See TexImage3D
internalformat: A COMPRESSED_

format from [Table 8.14]

void CompressedTexImage2D(enum target,
int level, enum internalformat,
sizei width, sizei height, int border,
sizei imageSize, const void *data);

target: See TexImage2D
internalformat: May be one of the COMPRESSED_

formats from [Table 8.14]

void CompressedTexImage1D(enum target,
int level, enum internalformat,
sizei width, int border, sizei imageSize,
const void *data);

target: TEXTURE_1D, PROXY_TEXTURE_1D
internalformat: See TexImage1D, omitting

compressed rectangular texture formats

void CompressedTexSubImage3D(
enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

target: See TexSubImage3D
format: See internalformat for

CompressedTexImage3D

void CompressedTexSubImage2D(
enum target, int level, int xoffset,
int yoffset, sizei width, sizei height,
enum format, sizei imageSize,
cont void *data);

target: See TexSubImage2D
format: See internalformat for

CompressedTexImage2D

void CompressedTexSubImage1D(
enum target, int level, int xoffset,
sizei width, enum format, sizei imageSize,
const void *data);

target: See TexSubImage1D
format: See internalformat for

CompressedTexImage1D

void CompressedTextureSubImage3D(
uint texture, int level, int xoffset,
int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

format: See internalformat for
CompressedTexImage3D

void CompressedTextureSubImage2D(
uint texture, int level, int xoffset,
int yoffset, sizei width, sizei height,
enum format, sizei imageSize,
cont void *data);

format: See internalformat for
CompressedTexImage2D

void CompressedTextureSubImage1D(
uint texture, int level, int xoffset,
sizei width, enum format, sizei imageSize,
const void *data);

format: See internalformat for
CompressedTexImage1D

Multisample Textures [8.8]
void TexImage3DMultisample(enum target,

sizei samples, int internalformat,
sizei width, sizei height, sizei depth,
boolean fixedsamplelocations);

target: [PROXY_]TEXTURE_2D_MULTISAMPLE_ARRAY
internalformat: RED, RG, RGB, RGBA, RGBA{32, 32UI},

DEPTH_COMPONENT[16, 24, 32, 32F],
DEPTH{24, 32F}_STENCIL8, STENCIL_INDEX{1, 4, 8, 16}

void TexImage2DMultisample(enum target,
sizei samples, int internalformat, sizei width,
sizei height, boolean fixedsamplelocations);

target: [PROXY_]TEXTURE_2D_MULTISAMPLE
internalformat: See TexImage3DMultisample

Buffer Textures [8.9]
void TexBufferRange(enum target,

enum internalFormat, uint buffer,
intptr offset, sizeiptr size);

void TextureBufferRange(uint texture,
enum internalFormat, uint buffer,
intptr offset, sizeiptr size);

internalformat: See TexBuffer

void TexBuffer(enum target,
enum internalformat, uint buffer);

target: TEXTURE_BUFFER
internalformat: [Table 8.16] R8, R8{I, UI}, R16,

R16{F, I, UI}, R32{F, I, UI}, RG8, RG8{I, UI}, RG16,
RG16{F, I, UI}, RG32{F, I, UI}, RGB32F, RGB32{I, UI},
RGBA8, RGBA8{I, UI}, RGBA16, RGBA16{F, I, UI},
RGBA32{F, I, UI}

void TextureBuffer(uint texture,
enum internalformat, uint buffer);

internalformat: See TexBuffer

Texture Parameters [8.10]
void TexParameter{i f}(enum target,

enum pname, T param);
target: See BindTexture

void TexParameter{i f}v(enum target,
enum pname, const T *params);

target: See BindTexture

void TexParameterI{i ui}v(enum target,
enum pname, const T *params);

target: See BindTexture
pname for all TexParameter* functions:

DEPTH_STENCIL_TEXTURE_MODE or
TEXTURE_X where X may be one of
WRAP_{S, T, R}, BORDER_COLOR,
{MIN, MAG}_FILTER, LOD_BIAS,{MIN, MAX}_LOD,
{BASE, MAX}_LEVEL, SWIZZLE_{R, G, B, A, RGBA},
COMPARE_{MODE, FUNC} [Table 8.17]

void TextureParameter{i f}(uint texture,
enum pname, T param);

pname: See BindTexture

void TextureParameter{i f}v(uint texture,
enum pname, const T *params);

pname: See BindTexture

void TextureParameterI{i ui}v(uint texture,
enum pname, const T *params);

pname for all TextureParameter* functions:
TEXTURE_{3D, RECTANGLE, MAX_ANISOTROPY},
TEXTURE_{1D, 2D, CUBE_MAP}[_ARRAY],
TEXTURE_2D_MULTISAMPLE[_ARRAY]

Texture Queries [8.11]
void GetTexParameter{if}v(enum target,

enum pname, T * params);
target: See BindTexture
pname: See GetTexParameterI{i ui}v

void GetTexParameterI{i ui}v(enum target,
enum pname, T * params);

target: See BindTexture
pname: IMAGE_FORMAT_COMPATIBILITY_TYPE,

TEXTURE_IMMUTABLE_{FORMAT, LEVELS},
TEXTURE_VIEW_MIN_{LEVEL, LAYER},
TEXTURE_VIEW_NUM_{LEVELS, LAYERS},
DEPTH_STENCIL_TEXTURE_MODE, or TEXTURE_X
where X may be one of WRAP_{S, T, R},
BORDER_COLOR, TARGET, {MIN, MAG}_FILTER,
LOD_BIAS,{MIN, MAX}_LOD, {BASE, MAX}_LEVEL,
SWIZZLE_{R, G, B, A, RGBA},
COMPARE_{MODE, FUNC} [Table 8.17]

void GetTextureParameter{if}v(uint texture,
enum pname, T *data);

pname: See GetTexParameterI{i ui}v

void GetTextureParameterI{i ui}v(uint texture,
enum pname, T *data);

pname: See GetTexParameterI{i ui}v

void GetTexLevelParameter{i f}v(enum target,
int level, enum pname, T *params);

target: [PROXY_]TEXTURE_{1D, 2D, 3D},
TEXTURE_BUFFER, PROXY_TEXTURE_CUBE_MAP,
[PROXY_]TEXTURE_{1D, 2D,CUBE_MAP}_ARRAY,
[PROXY_]TEXTURE_RECTANGLE,
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
[PROXY_]TEXTURE_2D_MULTISAMPLE[_ARRAY]

pname: TEXTURE _*, where * may be WIDTH,
HEIGHT, DEPTH, FIXED_SAMPLE_LOCATIONS,
INTERNAL_FORMAT, SHARED_SIZE, COMPRESSED,
COMPRESSED_IMAGE_SIZE, SAMPLES,
BUFFER_{OFFSET, SIZE}, or X_{SIZE, TYPE}
where X can be RED, GREEN, BLUE, ALPHA, DEPTH

void GetTextureLevelParameter{i f}v(
uint texture, int level, enum pname,
T *params);

pname: See GetTexLevelParameter{i f}v

void GetTexImage(enum target, int level,
enum format, enum type, void *pixels);

target: TEXTURE_{1, 2}D[_ARRAY],
TEXTURE_{3D, RECTANGLE, CUBE_MAP_ARRAY},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}

format: See TexImage3D
type: [UNSIGNED_]BYTE, SHORT, INT,

[HALF_]FLOAT, or a value from [Table 8.2]

void GetTextureImage(uint texture, int level,
enum format, enum type, sizei bufSize,
void *pixels);

level: LOD level
format, type: See GetTexImage

void GetnTexImage(enum tex, int level,
enum format, enum type, sizei bufSize,
void *pixels);

tex: TEXTURE_{1D, 2D, 3D}[_ARRAY], TEXTURE_3D,
TEXTURE_{CUBE_MAP_ARRAY, RECTANGLE},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}

level, format, type: See GetTextureImage

void GetTextureSubImage(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type, sizei bufSize,
void *pixels);

level, format, type: See GetTextureImage

void GetCompressedTexImage(enum target,
int level, void *pixels);

target: See GetTextureImage

void
GetCompressedTextureImage(uint texture,
int level, sizei bufSize, void *pixels);

level: See GetTextureImage

void GetnCompressedTexImage(enum target,
int level, sizei bufsize, void *pixels);

target: See GetCompressedTexImage
level: LOD level

void GetCompressedTextureSubImage(
uint texture, int level, int xoffset, int yoffset,
int zoffset, sizei width, sizei height,
sizei depth, sizei bufSize, void *pixels);

level: LOD level

Cube Map Texture Select [8.13.1]
Enable/Disable/IsEnabled(

TEXTURE_CUBE_MAP_SEAMLESS);

Manual Mipmap Generation [8.14.4]
void GenerateMipmap(enum target);

target: TEXTURE_{1D, 2D, 3D},
TEXTURE_{1D, 2D}_ARRAY,
TEXTURE_CUBE_MAP[_ARRAY]

void GenerateTextureMipmap(uint texture);

Texture Views [8.18]
void TextureView(uint texture, enum target,

uint origtexture, enum internalformat,
uint minlevel, uint numlevels, uint minlayer,
uint numlayers);

target: TEXTURE_{1D, 2D,CUBE_MAP}[_ARRAY],
TEXTURE_3D, TEXTURE_RECTANGLE,
TEXTURE_2D_MULTISAMPLE[_ARRAY]

internalformat:
R8, R8{UI, I}, R8_SNORM, R11F_G11F_B10F,
R16{F, UI, I}, R16[_SNORM],
R32{F, UI, I}, SRGB8[UI, I],
RG8{F, UI, I}, RG8[_SNORM],
RG16{F, UI, I}, RG16[_SNORM], RG32{F, UI, I},
RGB8[_SNORM], RGB9_E5, RGB10_A2[UI],
RGBA8{UI, I}, RGBA8[_SNORM],
RGB16{F, UI, I}, RGB16[_SNORM], RGB32{F, UI, I},
RGBA16{F, UI, I}, RGBA16[_SNORM],
RGBA32{F, UI, I}, SRGB8_ALPHA8;
COMPRESSED_X where X may be
[SIGNED]_RED_RGTC1, [SIGNED]_RG_RGTC2,
{RGBA, SRGB_ALPHA}_BPTC_UNORM,
RGB_BPTC_[UN]SIGNED_FLOAT

Immutable-Format Tex. Images [8.19]
void TexStorage1D(enum target, sizei levels,

enum internalformat, sizei width);
target: TEXTURE_1D
internalformat: any of the sized internal color, depth,

and stencil formats in [Tables 8.18-20]

(Continued on next page)

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

Page 4 OpenGL 4.6 API Reference Guide

Framebuffer Objects
Binding and Managing [9.2]
void BindFramebuffer(enum target,

uint framebuffer);
target: [DRAW_, READ_]FRAMEBUFFER

void CreateFramebuffers(sizei n,
uint *framebuffers);

void GenFramebuffers(sizei n,
uint *framebuffers);

void DeleteFramebuffers(sizei n,
const uint *framebuffers);

boolean IsFramebuffer(uint framebuffer);

Framebuffer Object Parameters [9.2.1]
void FramebufferParameteri(

enum target, enum pname, int param);
target: [DRAW_, READ_]FRAMEBUFFER
pname: FRAMEBUFFER_DEFAULT_X where X may

be WIDTH, HEIGHT, FIXED_SAMPLE_LOCATIONS,
SAMPLES, LAYERS

void NamedFramebufferParameteri(
uint framebuffer, enum pname, int param);

pname: See FramebufferParameteri

Framebuffer Object Queries [9.2.3]
void GetFramebufferParameteriv(

enum target, enum pname, int *params);
target: See FramebufferParameteri
pname: See FramebufferParameteri plus

DOUBLEBUFFER, SAMPLES, SAMPLE_BUFFERS,
IMPLEMENTATION_COLOR_READ_FORMAT,
IMPLEMENTATION_COLOR_READ_TYPE, STEREO

void GetNamedFramebufferParameteriv(
uint framebuffer, enum pname, int
*params);

pname: See GetFramebufferParameteri

void GetFramebufferAttachmentParameteriv(
enum target, enum attachment,
enum pname, int *params);

target: [DRAW_, READ_]FRAMEBUFFER

attachment: DEPTH, FRONT_{LEFT, RIGHT}, STENCIL,
BACK_{LEFT, RIGHT}, COLOR_ATTACHMENTi,
{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT

pname: FRAMEBUFFER_ATTACHMENT_ X where X
may be OBJECT_{TYPE, NAME}, COMPONENT_TYPE,
{RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE,
COLOR_ENCODING, TEXTURE_{LAYER, LEVEL},
LAYERED, TEXTURE_CUBE_MAP_FACE

void GetNamedFramebufferAttachment-
Parameteriv(uint framebuffer,
enum attachment, enum pname,
int *params);

attachment, pname: See GetFramebufferParameteriv

Renderbuffer Objects [9.2.4]
void BindRenderbuffer(enum target,

uint renderbuffer);
target: RENDERBUFFER

void {Create, Gen}Renderbuffers(sizei n,
uint *renderbuffers);

void DeleteRenderbuffers(sizei n,
const uint *renderbuffers);

boolean IsRenderbuffer(uint renderbuffer);

void RenderbufferStorageMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height);

target: RENDERBUFFER
internalformat: See TexImage3DMultisample

void
NamedRenderbufferStorageMultisample(
uint renderbuffer, sizei samples,
enum internalformat, sizei width,
sizei height);

internalformat: See TexImage3DMultisample

void RenderbufferStorage(enum target,
enum internalformat, sizei width,
sizei height);

target: RENDERBUFFER
internalformat: See TexImage3DMultisample

void NamedRenderbufferStorage(
uint renderbuffer, enum internalformat,
sizei width, sizei height);

internalformat: See TexImage3DMultisample

Renderbuffer Object Queries [9.2.6]

void GetRenderbufferParameteriv(
enum target, enum pname, int *params);

target: RENDERBUFFER
pname: [Table 23.27]

RENDERBUFFER_X where X may be WIDTH,
HEIGHT, INTERNAL_FORMAT, SAMPLES,
{RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE

void GetNamedRenderbufferParameteriv(
uint renderbuffer, enum pname,
int *params);

pname: See GetRenderbufferParameteriv

Attaching Renderbuffer Images [9.2.7]
void FramebufferRenderbuffer(

enum target, enum attachment,
enum renderbuffertarget,
uint renderbuffer);

target: [DRAW_, READ_]FRAMEBUFFER
attachment: [Table 9.1]

{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT,
COLOR_ATTACHMENTi where i is
[0, MAX_COLOR_ATTACHMENTS - 1]

renderbuffertarget: RENDERBUFFER if renderbuffer is
non-zero, else undefined

void NamedFramebufferRenderbuffer(
uint framebuffer, enum attachment,
enum renderbuffertarget,
uint renderbuffer);

attachment, renderbuffertarget: See
FramebufferRenderbuffer

Attaching Texture Images [9.2.8]
void FramebufferTexture(enum target,

enum attachment, uint texture, int level);
target: [DRAW_, READ_]FRAMEBUFFER
attachment: See FramebufferRenderbuffer

void NamedFramebufferTexture(
uint framebuffer, enum attachment,
uint texture, int level);

attachment: See FramebufferRenderbuffer

void FramebufferTexture1D(enum target,
enum attachment, enum textarget,
uint texture, int level);

textarget: TEXTURE_1D
target, attachment: See FramebufferRenderbuffer

void FramebufferTexture2D(enum target,
enum attachment, enum textarget,
uint texture, int level);

textarget: TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
TEXTURE_{2D, RECTANGLE, 2D_MULTISAMPLE}
(unspecified if texture is 0)

target, attachment: See FramebufferRenderbuffer

void FramebufferTexture3D(enum target,
enum attachment, enum textarget,
uint texture, int level, int layer);

textarget: TEXTURE_3D (unspecified if texture is 0)
target, attachment: See FramebufferRenderbuffer

void FramebufferTextureLayer(enum target,
enum attachment, uint texture,
int level, int layer);

target, attachment: See FramebufferRenderbuffer

void NamedFramebufferTextureLayer(
uint framebuffer, enum attachment,
uint texture, int level, int layer);

attachment: See FramebufferRenderbuffer

Feedback Loops [9.3.1]
void TextureBarrier(void);

Framebuffer Completeness [9.4.2]
enum CheckFramebufferStatus(enum target);

target: [DRAW_, READ_]FRAMEBUFFER
returns: FRAMEBUFFER_COMPLETE or a constant

indicating the violating value

enum CheckNamedFramebufferStatus(
uint framebuffer, enum target);

target: See CheckFramebufferStatus

Vertices
Separate Patches [10.1.15]
void PatchParameteri(enum pname, int value);

pname: PATCH_VERTICES

Current Vertex Attribute Values [10.2]
Use the commands VertexAttrib*for attributes
of type float, VertexAttribI* for int or uint, or
VertexAttribL* for double.

void VertexAttrib{1234}{s f d}(uint index,
T values);

void VertexAttrib{123}{s f d}v(uint index,
const T *values);

void VertexAttrib4{b s i f d ub us ui}v(
uint index, const T *values);

void VertexAttrib4Nub(uint index, ubyte x,
ubyte y, ubyte z, ubyte w);

void VertexAttrib4N{b s i ub us ui}v(
uint index, const T *values);

void VertexAttribI{1234}{i ui}(uint index,
T values);

void VertexAttribI{1234}{i ui}v(uint index,
const T *values);

void VertexAttribI4{b s ub us}v(uint index,
const T *values);

void VertexAttribL{1234}d(uint index,
const T values);

void VertexAttribL{1234}dv(uint index,

const T *values);
void VertexAttribP{1234}ui(uint index,

enum type, boolean normalized, uint value);
void VertexAttribP{1234}uiv(uint index,

enum type, boolean normalized,
const uint *value);

type: [UNSIGNED_]INT_2_10_10_10_REV, or
UNSIGNED_INT_10F_11F_11F_REV (except for
VertexAttribP4uiv)

Vertex Arrays
Vertex Array Objects [10.3.1]
All states related to definition of data used by
vertex processor is in a vertex array object.

void GenVertexArrays(sizei n, uint *arrays);
void DeleteVertexArrays(sizei n,

const uint *arrays);
void BindVertexArray(uint array);
void CreateVertexArrays(sizei n, uint *arrays);
boolean IsVertexArray(uint array);
void VertexArrayElementBuffer(uint vaobj,

uint buffer);

Generic Vertex Attribute Arrays [10.3.2]
void VertexAttribFormat(uint attribindex,

int size, enum type, boolean normalized,
unit relativeoffset);

type: [UNSIGNED_]BYTE, [UNSIGNED_]SHORT,
[UNSIGNED_]INT, [HALF_]FLOAT, DOUBLE, FIXED,
[UNSIGNED_]INT_2_10_10_10_REV,
UNSIGNED_INT_10F_11F_11F_REV

void VertexAttribIFormat(uint attribindex,
int size, enum type, unit relativeoffset);

type: [UNSIGNED_]BYTE, [UNSIGNED_]SHORT,
[UNSIGNED_]INT

void VertexAttribLFormat(uint attribindex,
int size, enum type, unit relativeoffset);

type: DOUBLE

void VertexArrayAttribFormat(uint vaobj,
uint attribindex, int size, enum type,
boolean normalized, uint relativeoffset);

type: See VertexAttribFormat

void VertexArrayAttribIFormat(uint vaobj,
uint attribindex, int size, enum type,
uint relativeoffset);

type: See VertexAttribIFormat

void VertexArrayAttribLFormat(uint vaobj,
uint attribindex, int size, enum type,
uint relativeoffset);

type: See VertexAttribLFormat

void BindVertexBuffer(uint bindingindex,
uint buffer, intptr offset, sizei stride);

void VertexArrayVertexBuffer(uint vaobj,
uint bindingindex, uint buffer, intptr offset,
sizei stride);

void BindVertexBuffers(uint first,
sizei count, const uint *buffers,
const intptr *offsets, const sizei *strides);

void VertexArrayVertexBuffers(uint vaobj,
uint first, sizei count, const uint *buffers,
const intptr *offsets, const sizei *strides);

void VertexAttribBinding(uint attribindex,
uint bindingindex);

(Continued on next page)

Textures and Samplers (cont.)
void TexStorage2D(enum target, sizei levels,

enum internalformat, sizei width,
sizei height);

target: TEXTURE_{RECTANGLE, CUBE_MAP},
TEXTURE_{1D_ARRAY, 2D}

internalformat: See TexStorage1D

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width,
sizei height, sizei depth);

target: TEXTURE_3D,
TEXTURE_{CUBE_MAP, 2D}[_ARRAY]

internalformat: See TexStorage1D

void TextureStorage1D(uint texture, sizei levels,
enum internalformat, sizei width);

internalformat: See TexStorage1D

void TextureStorage2D(uint texture,
sizei levels, enum internalformat,
sizei width, sizei height);

internalformat: See TexStorage1D

void TextureStorage3D(uint texture,
sizei levels, enum internalformat,
sizei width, sizei height, sizei depth);

internalformat: See TexStorage1D

void TexStorage2DMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height, boolean fixedsamplelocations);

target: TEXTURE_2D_MULTISAMPLE

void TexStorage3DMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height, sizei depth,
boolean fixedsamplelocations);

target: TEXTURE_2D_MULTISAMPLE_ARRAY

void TextureStorage2DMultisample(
uint texture, sizei samples,
enum internalformat, sizei width,
sizei height, boolean fixedsamplelocations);

void TextureStorage3DMultisample(
uint texture, sizei samples,
enum internalformat, sizei width,
sizei height, sizei depth,
boolean fixedsamplelocations);

Invalidate Texture Image Data [8.20]
void InvalidateTexSubImage(uint texture,

int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth);

void InvalidateTexImage(uint texture, int level);

Clear Texture Image Data [8.21]
void ClearTexSubImage(uint texture,

int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type, const void *data);

format, type: See TexImage3D, pg 2 this card

void ClearTexImage(uint texture,
int level, enum format, enum type,
const void *data);

format, type: See TexImage3D, pg 2 this card

Texture Image Loads/Stores [8.26]
void BindImageTexture(uint index,

uint texture, int level, boolean layered,
int layer, enum access, enum format);

access: READ_ONLY, WRITE_ONLY, READ_WRITE
format: RGBA{32,16}F, RG{32,16}F, R11F_G11F_B10F,

R{32,16}F, RGBA{32,16,8}UI, RGB10_A2UI,
RG{32,16,8}UI, R{32,16,8}UI, RGBA{32,16,8}I,
RG{32,16,8}I, R{32,16,8}I, RGBA{16,8}, RGB10_A2,
RG{16,8}, R{16,8}, RGBA{16,8}_SNORM,
RG{16,8}_SNORM, R{16,8}_SNORM [Table 8.26]

void BindImageTextures(uint first,
sizei count, const uint *textures);

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL 4.6 API Reference Guide Page 5

Vertex Post-Processing [13]
Transform Feedback [13.2]
void GenTransformFeedbacks(sizei n,

uint *ids);

void DeleteTransformFeedbacks(sizei n,
const uint *ids);

boolean IsTransformFeedback(uint id);

void BindTransformFeedback(
enum target, uint id);

target: TRANSFORM_FEEDBACK

void CreateTransformFeedbacks(
sizei n, uint *ids);

void BeginTransformFeedback(
enum primitiveMode);

primitiveMode: TRIANGLES, LINES, POINTS

void EndTransformFeedback(void);

void PauseTransformFeedback(void);

void ResumeTransformFeedback(void);

void TransformFeedbackBufferRange(
uint xfb, uint index, uint buffer, intptr offset,
sizeiptr size);

void TransformFeedbackBufferBase(
uint xfb, uint index, uint buffer);

Transform Feedback Drawing [13.2.3]
void DrawTransformFeedback(

enum mode, uint id);
mode: See Drawing Commands [10.4] above

void DrawTransformFeedbackInstanced(
enum mode, uint id, sizei instancecount);

void DrawTransformFeedbackStream(
enum mode, uint id, uint stream);

void
DrawTransformFeedbackStreamInstanced(
enum mode, uint id, uint stream,
sizei instancecount);

Flatshading [13.4]
void ProvokingVertex(enum provokeMode);

provokeMode: {FIRST, LAST}_VERTEX_CONVENTION

Primitive Clipping [13.5]
Enable/Disable/IsEnabled(target);

target: DEPTH_CLAMP, CLIP_DISTANCEi where
i = [0..MAX_CLIP_DISTANCES - 1]

void ClipControl(enum origin, enum depth);
origin: LOWER_LEFT or UPPER_LEFT
depth: NEGATIVE_ONE_TO_ONE or ZERO_TO_ONE

Controlling Viewport [13.6.1]
void DepthRangeArrayv(uint first,

sizei count, const double *v);

void DepthRangeIndexed(uint index,
double n, double f);

void DepthRange(double n, double f);

void DepthRangef(float n, float f);

void ViewportArrayv(uint first, sizei count,
const float *v);

void ViewportIndexedf(uint index, float x,
float y, float w, float h);

void ViewportIndexedfv(uint index,
const float *v);

void Viewport(int x, int y, sizei w, sizei h);

Rasterization [13.4, 14]

Enable/Disable/IsEnabled(target);
target: RASTERIZER_DISCARD

Multisampling [14.3.1]
Use to antialias points, and lines.
Enable/Disable/IsEnabled(target);

target: MULTISAMPLE, SAMPLE_SHADING

void GetMultisamplefv(enum pname,
uint index, float *val);

pname: SAMPLE_POSITION

void MinSampleShading(float value);

Points [14.4]
void PointSize(float size);

void PointParameter{i f}(enum pname,
T param);

pname, param: See PointParameter{if}v

void PointParameter{i f}v(enum pname,
const T *params);

pname: POINT_FADE_THRESHOLD_SIZE,
POINT_SPRITE_COORD_ORIGIN

params: The fade threshold if pname is
POINT_FADE_THRESHOLD_SIZE;
{LOWER, UPPER}_LEFT if pname is
POINT_SPRITE_COORD_ORIGIN

Enable/Disable/IsEnabled(target);
target: PROGRAM_POINT_SIZE

Line Segments [14.5]
Enable/Disable/IsEnabled(target);

target: LINE_SMOOTH

void LineWidth(float width);

Polygons [14.6, 14.6.1]
Enable/Disable/IsEnabled(target);

target: POLYGON_SMOOTH, CULL_FACE

void FrontFace(enum dir);
dir: CCW, CW

void CullFace(enum mode);
mode: FRONT, BACK, FRONT_AND_BACK

Polygon Rast. & Depth Offset [14.6.4-5]

void PolygonMode(enum face, enum mode);
face: FRONT_AND_BACK
mode: POINT, LINE, FILL

void PolygonOffsetClamp(float factor,
float units, float clamp);

void PolygonOffset(float factor, float units);

Enable/Disable/IsEnabled(target);
target: POLYGON_OFFSET_{POINT, LINE, FILL}

Vertex Attributes [11.1.1]
Vertex shaders operate on array of
4-component items numbered from slot 0 to
MAX_VERTEX_ATTRIBS - 1.

void BindAttribLocation(uint program,
uint index, const char *name);

void GetActiveAttrib(uint program,
uint index, sizei bufSize, sizei *length,
int *size, enum *type, char *name);

int GetAttribLocation(uint program,
const char *name);

Transform Feedback Variables [11.1.2]
void TransformFeedbackVaryings(

uint program, sizei count,
const char * const *varyings,
enum bufferMode);

bufferMode:
INTERLEAVED_ATTRIBS, SEPARATE_ATTRIBS

void GetTransformFeedbackVarying(
uint program, uint index, sizei bufSize,
sizei *length, sizei *size, enum *type,
char *name);

*type returns NONE, FLOAT , FLOAT_VECn,
DOUBLE , DOUBLE_VECn, INT, UNSIGNED_INT,
INT_VECn, UNSIGNED_INT_VECn,
MATnxm, FLOAT_MATnxm, DOUBLE_MATnxm,
FLOAT_MATn, DOUBLE_MATn

Shader Execution [11.1.3]
void ValidateProgram(uint program);

void ValidateProgramPipeline(uint pipeline);

Tessellation Prim. Generation [11.2.2]
void PatchParameterfv(enum pname,

const float *values);
pname: PATCH_DEFAULT_INNER_LEVEL,

PATCH_DEFAULT_OUTER_LEVEL

Vertex Arrays (cont.)
void VertexArrayAttribBinding(uint vaobj,

uint attribindex, uint bindingindex);

void VertexAttribPointer(uint index, int size,
enum type, boolean normalized,
sizei stride, const void *pointer);

type: See VertexAttribFormat

void VertexAttribIPointer(uint index,
int size, enum type, sizei stride,
const void *pointer);

type: See VertexAttribIFormat
index: [0, MAX_VERTEX_ATTRIBS - 1]

void VertexAttribLPointer(uint index, int size,
enum type, sizei stride, const void*pointer);

type: DOUBLE

void EnableVertexAttribArray(uint index);
void EnableVertexArrayAttrib(uint vaobj,

uint index);
void DisableVertexAttribArray(uint index);
void DisableVertexArrayAttrib(uint vaobj,

uint index);

Vertex Attribute Divisors [10.3.4]
void VertexBindingDivisor(uint bindingindex,

uint divisor);
void VertexArrayBindingDivisor(uint vaobj,

uint bindingindex, uint divisor);
void VertexAttribDivisor(uint index,

uint divisor);

Primitive Restart [10.3.6]
Enable/Disable/IsEnabled(target);

target: PRIMITIVE_RESTART[_FIXED_INDEX]

void PrimitiveRestartIndex(uint index);

Drawing Commands [10.4]
For all the functions in this section:

mode: POINTS, PATCHES, LINE_STRIP,
LINE_LOOP, TRIANGLE_STRIP, TRIANGLE_FAN,
LINES, LINES_ADJACENCY, TRIANGLES,
TRIANGLES_ADJACENCY, LINE_STRIP_ADJACENCY,
TRIANGLE_STRIP_ADJACENCY

type: UNSIGNED_{BYTE, SHORT, INT}

void DrawArrays(enum mode, int first,
sizei count);

void DrawArraysInstancedBaseInstance(
enum mode, int first, sizei count,
sizei instancecount, uint baseinstance);

void DrawArraysInstanced(enum mode,
int first, sizei count, sizei instancecount);

void DrawArraysIndirect(enum mode,
const void *indirect);

void MultiDrawArrays(enum mode,
const int *first, const sizei *count,
sizei drawcount);

void MultiDrawArraysIndirect(enum mode,
const void *indirect, sizei drawcount,
sizei stride);

void MultiDrawArraysIndirectCount(
enum mode, const void *indirect,
intptr drawcount, intptr maxdrawcount,
sizei stride);

void DrawElements(enum mode, sizei count,
enum type, const void *indices);

void DrawElementsInstancedBaseInstance(
enum mode, sizei count, enum type,
const void *indices, sizei instancecount,
uint baseinstance);

void DrawElementsInstanced(enum mode,
sizei count, enum type, const void *indices,
sizei instancecount);

void MultiDrawElements(enum mode,
const sizei *count, enum type,
const void * const *indices,
sizei drawcount);

void DrawRangeElements(enum mode,
uint start, uint end, sizei count,
enum type, const void *indices);

void DrawElementsBaseVertex(enum mode,
sizei count, enum type, const void *indices,
int basevertex);

void DrawRangeElementsBaseVertex(
enum mode, uint start, uint end,
sizei count, enum type, const void *indices,
int basevertex);

void DrawElementsInstancedBaseVertex(
enum mode, sizei count, enum type,
const void *indices, sizei instancecount,
int basevertex);

void DrawElementsInstancedBase-
VertexBaseInstance(enum mode,
sizei count, enum type,
const void *indices, sizei instancecount,
int basevertex, uint baseinstance);

void DrawElementsIndirect(enum mode,
enum type, const void *indirect);

void MultiDrawElementsIndirect(
enum mode, enum type,
const void *indirect, sizei drawcount,
sizei stride);

void MultiDrawElementsIndirectCount(
enum mode, enum type, const void *indirect,
intptr drawcount, sizei maxdrawcount,
sizei stride);

void MultiDrawElementsBaseVertex(
enum mode, const sizei *count,
enum type, const void *const *indices,
sizei drawcount, const int *basevertex);

Vertex Array Queries [10.5]
void GetVertexArrayiv(uint vaobj,

enum pname, int *param);
pname: ELEMENT_ARRAY_BUFFER_BINDING

void GetVertexArrayIndexdiv(uint vaobj,
uint index, enum pname, int *param);

pname: VERTEX_ATTRIB_RELATIVE_OFFSET or
VERTEX_ATTRIB_ARRAY_X where X is one of
ENABLED, SIZE, STRIDE, TYPE, NORMALIZED,
INTEGER, LONG, DIVISOR

void GetVertexArrayIndexd64iv(uint vaobj,
uint index, enum pname, int64 *param);

pname: VERTEX_BINDING_OFFSET

void GetVertexAttrib{d f i}v(uint index,
enum pname, T *params);

pname: See GetVertexArrayIndexediv plus
VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
VERTEX_ATTRIB_BINDING,
CURRENT_VERTEX_ATTRIB

void GetVertexAttribI{i ui}v(uint index,
enum pname, T *params);

pname: See GetVertexAttrib{d f i}v

void GetVertexAttribLdv(uint index,
enum pname, double *params);

pname: See GetVertexAttrib{d f i}v

void GetVertexAttribPointerv(uint index,
enum pname, const void **pointer);

pname: VERTEX_ATTRIB_ARRAY_POINTER

Conditional Rendering [10.9]
void BeginConditionalRender(uint id,

enum mode);
mode: QUERY _[NO_]WAIT[_INVERTED],

QUERY_BY_REGION_[NO_]WAIT[_INVERTED]

void EndConditionalRender(void);

Fragment Shaders [15.2]

void BindFragDataLocationIndexed(
uint program, uint colorNumber,
uint index, const char *name);

void BindFragDataLocation(uint program,
uint colorNumber, const char *name);

int GetFragDataLocation(uint program,
const char *name);

int GetFragDataIndex(uint program,
const char *name);

Compute Shaders [19]

void DispatchCompute(uint num_groups_x,
uint num_groups_y, uint num_groups_z);

void DispatchComputeIndirect(
intptr indirect);

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

Page 6 OpenGL 4.6 API Reference Guide
Per-Fragment Operations
Scissor Test [17.3.2]
Enable/Disable/IsEnabled(SCISSOR_TEST);

Enablei/Disablei/IsEnabledi(SCISSOR_TEST,
uint index);

void ScissorArrayv(uint first, sizei count,
const int *v);

void ScissorIndexed(uint index, int left,
int bottom, sizei width, sizei height);

void ScissorIndexedv(uint index, int *v);

void Scissor(int left, int bottom, sizei width,
sizei height);

Multisample Fragment Ops. [17.3.3]
Enable/Disable/IsEnabled(target);

target: SAMPLE_ALPHA_TO_{COVERAGE, ONE},
SAMPLE_COVERAGE, SAMPLE_MASK

void SampleCoverage(float value,
boolean invert);

void SampleMaski(uint maskNumber,
bitfield mask);

Stencil Test [17.3.5]
Enable/Disable/IsEnabled(STENCIL_TEST);

void StencilFunc(enum func, int ref,
uint mask);

func: NEVER, ALWAYS, LESS, GREATER, EQUAL,
LEQUAL, GEQUAL, NOTEQUAL

void StencilFuncSeparate(enum face,
enum func, int ref, uint mask);

func: See StencilFunc

void StencilOp(enum sfail, enum dpfail,
enum dppass);

void StencilOpSeparate(enum face,
enum sfail, enum dpfail, enum dppass);

face: FRONT, BACK, FRONT_AND_BACK
sfail, dpfail, dppass: KEEP, ZERO, REPLACE, INCR,

DECR, INVERT, INCR_WRAP, DECR_WRAP

Depth Buffer Test [17.3.6]
Enable/Disable/IsEnabled(DEPTH_TEST);

void DepthFunc(enum func);
func: See StencilFunc

Occlusion Queries [17.3.7]
BeginQuery(enum target, uint id);

EndQuery(enum target);
target: SAMPLES_PASSED, ANY_SAMPLES_PASSED,

ANY_SAMPLES_PASSED_CONSERVATIVE

Blending [17.3.8]
Enable/Disable/IsEnabled(BLEND);

Enablei/Disablei/IsEnabledi(BLEND,
uint index);

void BlendEquation(enum mode);

void BlendEquationSeparate(enum modeRGB,
enum modeAlpha);

modeRGB, modeAlpha: MIN, MAX ,
FUNC_{ADD, SUBTRACT, REVERSE_SUBTRACT}

void BlendEquationi(uint buf, enum mode);

void BlendEquationSeparatei(uint buf,
enum modeRGB, enum modeAlpha);

modeRGB, modeAlpha:
See BlendEquationSeparate

void BlendFunc(enum src, enum dst);
src, dst: See BlendFuncSeparate

void BlendFuncSeparate(enum srcRGB,
enum dstRGB, enum srcAlpha,
enum dstAlpha);

srcRGB, dstRGB, srcAlpha, dstAlpha:
ZERO, ONE, SRC_ALPHA_SATURATE,
{SRC, SRC1, DST, CONSTANT}_{COLOR, ALPHA},
ONE_MINUS_{SRC, SRC1}_{COLOR, ALPHA},
ONE_MINUS_{DST, CONSTANT}_{COLOR, ALPHA}

void BlendFunci(uint buf, enum src, enum dst);
src, dst: See BlendFuncSeparate

void BlendFuncSeparatei(uint buf,
enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

dstRGB, dstAlpha, srcRGB, srcAlpha:
See BlendFuncSeparate

void BlendColor(float red, float green, float blue,
float alpha);

Dithering [17.3.10]
Enable/Disable/IsEnabled(DITHER);

Logical Operation [17.3.11]
Enable/Disable/IsEnabled(COLOR_LOGIC_OP);

void LogicOp(enum op);
op: CLEAR, AND, AND_REVERSE, COPY, AND_INVERTED,

NOOP, XOR, OR, NOR, EQUIV, INVERT, OR_REVERSE,
COPY_INVERTED, OR_INVERTED, NAND, SET

Debug Output [20]

Enable/Disable/IsEnabled(DEBUG_OUTPUT);
Debug Message Callback [20.2]
void DebugMessageCallback(

DEBUGPROC callback,
const void *userParam);

callback: has the following prototype:
void callback(enum source, enum type,

uint id, enum severity, sizei length,
const char *message,
const void*userParam);

source: DEBUG_SOURCE_X where X may be API,
SHADER_COMPILER, WINDOW_SYSTEM,
THIRD_PARTY, APPLICATION, OTHER

type: DEBUG_TYPE_X where X may be ERROR,
MARKER, OTHER, DEPRECATED_BEHAVIOR,
UNDEFINED_BEHAVIOR, PERFORMANCE,
PORTABILITY, {PUSH, POP}_GROUP

severity: DEBUG_SEVERITY_{HIGH, MEDIUM},
DEBUG_SEVERITY_{LOW, NOTIFICATION}

Controlling Debug Messages [20.4]
void DebugMessageControl(enum source,

enum type, enum severity, sizei count,
const uint *ids, boolean enabled);

source, type, severity: See DebuckMessageCallback
(above), plus DONT_CARE

Externally Generated Messages [20.5]
void DebugMessageInsert(enum source,

enum type, uint id, enum severity,
int length, const char *buf);

source: DEBUG_SOURCE_{APPLICATION, THIRD_PARTY}
type, severity: See DebugMessageCallback

Debug Groups [20.6]
void PushDebugGroup(enum source,

uint id, sizei length, const char *message);
source: See DebugMessageInsert

void PopDebugGroup(void);

Debug Labels [20.7]
void ObjectLabel(enum identifier, uint name,

sizei length, const char *label);
identifier: BUFFER, FRAMEBUFFER, RENDERBUFFER,

PROGRAM_PIPELINE, PROGRAM,
QUERY, SAMPLER, SHADER, TEXTURE,
TRANSFORM_FEEDBACK, VERTEX_ARRAY

void ObjectPtrLabel(void* ptr, sizei length,
const char *label);

Synchronous Debug Output [20.8]
Enable/Disable/IsEnabled(

DEBUG_OUTPUT_SYNCHRONOUS);

Debug Output Queries [20.9]
uint GetDebugMessageLog(uint count,

sizei bufSize, enum *sources, enum *types,
uint *ids, enum *severities, sizei *lengths,
char *messageLog);

void GetObjectLabel(enum identifier,
uint name, sizei bufSize, sizei *length,
char *label);

void GetObjectPtrLabel(void* ptr, sizei bufSize,
sizei *length, char *label);

Hints [21.5]

void Hint(enum target, enum hint);
target: FRAGMENT_SHADER_DERIVATIVE_HINT,

TEXTURE_COMPRESSION_HINT,
{LINE, POLYGON}_SMOOTH_HINT

hint: FASTEST, NICEST, DONT_CARE

State and State Requests
A complete list of symbolic constants for states is
shown in the tables in [23].

Simple Queries [22.1]
void GetBooleanv(enum pname, boolean *data);

void GetIntegerv(enum pname, int *data);

void GetInteger64v(enum pname, int64 *data);

void GetFloatv(enum pname, float *data);

void GetDoublev(enum pname, double *data);

void GetDoublei_v(enum target, uint index,
double *data);

void GetBooleani_v(enum target, uint index,
boolean *data);

void GetIntegeri_v(enum target, uint index,
int *data);

void GetFloati_v(enum target, uint index,
float *data);

void GetInteger64i_v(enum target, uint index,
int64 *data);

boolean IsEnabled(enum cap);
boolean IsEnabledi(enum target, uint index);

String Queries [22.2]
void GetPointerv(enum pname, void **params);
ubyte *GetString(enum name);

name: RENDERER, VENDOR, VERSION,
SHADING_LANGUAGE_VERSION

(Continued on next page)

Whole Framebuffer
Selecting Buffers for Writing [17.4.1]
void DrawBuffer(enum buf);

buf: [Tables 17.4-5] NONE,
{FRONT, BACK}_{LEFT, RIGHT}, FRONT, BACK, LEFT,
RIGHT, FRONT_AND_BACK,
COLOR_ATTACHMENTi (i = [0,
MAX_COLOR_ATTACHMENTS - 1])

void NamedFramebufferDrawBuffer(
uint framebuffer, enum buf);

buf: See DrawBuffer

void DrawBuffers(sizei n, const enum *bufs);
*bufs: [Tables 17.5-6] {FRONT, BACK}_{LEFT, RIGHT},

NONE, COLOR_ATTACHMENTi (i = [0,
MAX_COLOR_ATTACHMENTS - 1])

void NamedFramebufferDrawBuffers(
uint framebuffer, sizei n,
const enum *bufs);

*bufs: See DrawBuffers

Fine Control of Buffer Updates [17.4.2]
void ColorMask(boolean r, boolean g,

boolean b, boolean a);
void ColorMaski(uint buf, boolean r,

boolean g, boolean b, boolean a);
void DepthMask(boolean mask);
void StencilMask(uint mask);
void StencilMaskSeparate(enum face,

uint mask);
face: FRONT, BACK, FRONT_AND_BACK

Clearing the Buffers [17.4.3]
void Clear(bitfield buf);

buf: 0 or the OR of
{COLOR, DEPTH, STENCIL}_BUFFER_BIT

void ClearColor(float r, float g, float b, float a);
void ClearDepth(double d);
void ClearDepthf(float d);
void ClearStencil(int s);

void ClearBuffer{i f ui}v(enum buffer,
int drawbuffer, const T *value);

buffer: COLOR, DEPTH, STENCIL

void ClearNamedFramebuffer{i f ui}v(
uint framebuffer, enum buffer,
int drawbuffer, const T *value);

buffer: See ClearBuffer{i f ui}v

void ClearBufferfi(enum buffer,
int drawbuffer, float depth, int stencil);

buffer: DEPTH_STENCIL

void ClearNamedFramebufferfi(
uint framebuffer, enum buffer,
int drawbuffer, float depth, int stencil);

buffer: See ClearBufferi

Invalidating Framebuffers [17.4.4]
void InvalidateSubFramebuffer(

enum target, sizei numAttachments,
const enum *attachments, int x, int y,
sizei width, sizei height);

target: [DRAW_ , READ_]FRAMEBUFFER

attachments: COLOR_ATTACHMENTi, DEPTH, COLOR,
{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT,
{FRONT, BACK}_{LEFT, RIGHT}, STENCIL

void InvalidateNamedFramebufferSubData(
uint framebuffer, sizei numAttachments,
const enum *attachments, int x, int y,
sizei width, sizei height);

attachments: See InvalidateSubFramebuffer

void InvalidateFramebuffer(
enumtarget, sizei numAttachments,
const enum *attachments);

target, *attachments: See InvalidateSubFramebuffer

void InvalidateNamedFramebufferData(
uint framebuffer, sizei numAttachments,
const enum *attachments);

*attachments: See InvalidateSubFramebuffer

Reading and Copying Pixels
Reading Pixels [18.2]
void ReadBuffer(enum src);

src: NONE, {FRONT, BACK}_{LEFT, RIGHT},
FRONT, BACK, LEFT, RIGHT,
FRONT_AND_BACK, COLOR_ATTACHMENTi
(i = [0, MAX_COLOR_ATTACHMENTS - 1])

void NamedFramebufferReadBuffer(
uint framebuffer, enum src);

src: See ReadBuffer

void ReadPixels(int x, int y, sizei width,
sizei height, enum format, enum type,
void *data);

format: STENCIL_INDEX, RED, GREEN, BLUE,
RG, RGB, RGBA, BGR, DEPTH_{COMPONENT,
STENCIL}, {RED, GREEN, BLUE, RG, RGB}_
INTEGER, {RGBA, BGR, BGRA}_INTEGER,
BGRA [Table 8.3]

type: [HALF_]FLOAT, [UNSIGNED_]BYTE,
[UNSIGNED_]SHORT, [UNSIGNED_]INT,
FLOAT_32_UNSIGNED_INT_24_8_REV,
UNSIGNED_{BYTE, SHORT, INT}_*
values in [Table 8.2]

void ReadnPixels(int x, int y, sizei width,
sizei height, enum format, enum type,
sizei bufSize, void *data);

format, type: See ReadPixels

Final Conversion [18.2.8]
void ClampColor(enum target, enum clamp);

target: CLAMP_READ_COLOR
clamp: TRUE, FALSE, FIXED_ONLY

Copying Pixels [18.3]
void BlitFramebuffer(int srcX0, int srcY0,

int srcX1, int srcY1, int dstX0, int dstY0,
int dstX1, int dstY1, bitfield mask,
enum filter);

mask: Bitwise 0 of the bitwise OR of
{COLOR, DEPTH, STENCIL}_BUFFER_BIT

filter: LINEAR, NEAREST

void BlitNamedFramebuffer(
uint readFramebuffer,
uint drawFramebuffer, int srcX0,
int srcY0, int srcX1, int srcY1, int dstX0,
int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);

mask, filter: See BlitFramebuffer

void CopyImageSubData(uint srcName,
enum srcTarget, int srcLevel, int srcX,
int srcY, int srcZ, uint dstName,
enum dstTarget, int dstLevel, int dstX,
int dstY, int dstZ, sizei srcWidth,
sizei srcHeight, sizei srcDepth);

srcTarget, dstTarget: See target for BindTexture in
section [8.1] on this card, plus
GL_RENDERTARGET

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL 4.6 API Reference Guide Page 7

OpenGL Texture Views and Texture Object State

 T

Texture state set with TextureView()
enum internalformat // base internal format
enum target // texture target

uint minlevel // first level of mipmap
uint numlevels // number of mipmap levels

uint minlayer // first layer of array texture
uint numlayers // number of layers in array

Texture View Parameters (immutable)
<target>
TEXTURE_INTERNAL_FORMAT TEXTURE_SHARED_SIZE
TEXTURE_VIEW_{MIN,NUM}_LEVEL TEXTURE_VIEW_{MIN,NUM}_LAYER
TEXTURE_IMMUTABLE_LEVELS IMAGE_FORMAT_COMPATIBILITY_TYPE
TEXTURE_{RED,GREEN,BLUE,ALPHA,DEPTH}_TYPE
TEXTURE_{RED,GREEN,BLUE,ALPHA,DEPTH,STENCIL}_SIZE

Texture Parameters (immutable)
TEXTURE_WIDTH TEXTURE_HEIGHT
TEXTURE_DEPTH TEXTURE_FIXED_SAMPLE_LOCATIONS
TEXTURE_COMPRESSED TEXTURE_COMPRESSED_IMAGE_SIZE
TEXTURE_IMMUTABLE_FORMAT TEXTURE_SAMPLES

Texture Parameters (mutable)
TEXTURE_SWIZZLE_{R,G,B,A} TEXTURE_MAX_LEVEL
TEXTURE_BASE_LEVEL DEPTH_STENCIL_TEXTURE_MODE

Sampler Parameters (mutable)
TEXTURE_BORDER_COLOR
TEXTURE_COMPARE_{FUNC,MODE}
TEXTURE_LOD_BIAS
TEXTURE_{MAX,MIN}_LOD
TEXTURE_{MAG,MIN}_FILTER
TEXTURE_MAX_ANISTOPY
TEXTURE_WRAP_{S,T,R}

OpenGL Compute Programming Model and Compute Memory Hierarchy

Use the barrier function to synchronize invocations in a work group:

 void barrier();
Use the memoryBarrier* or groupMemoryBarrier functions to order
reads/writes accessible to other invocations:
 void memoryBarrier();
 void memoryBarrierAtomicCounter();
 void memoryBarrierBuffer();
 void memoryBarrierImage();
 void memoryBarrierShared(); // Only for compute shaders
 void groupMemoryBarrier(); // Only for compute shaders

Use the compute shader built-in variables to specifiy work groups and invocations:
 in vec3 gl_NumWorkGroups; // Number of workgroups dispatched
const vec3 gl_WorkGroupSize; // Size of each work group for current shader
 in vec3 gl_WorkGroupID; // Index of current work group being executed
 in vec3 gl_LocalInvocationID; // index of current invocation in a work group
 in vec3 gl_GlobalInvocationID; // Unique ID across all work groups and threads. (gl_GlobalInvocationID = gl_WorkGroupID * gl_WorkGroupSize + gl_LocalInvocationID)

 gl_WorkGroupSize = (4,2,0)
 gl_WorkGroupID = (2,0,0)
 gl_LocalInvocationID = (1,0,0)
 gl_GlobalInvocationID = (9,3,0)

gl_NumWorkGroups = (4,2,0)

States, State Requests (cont.)
ubyte *GetStringi(enum name, uint index);

name: EXTENSIONS, SHADING_LANGUAGE_VERSION,
SPIR_V_EXTENSIONS

index:
[0, NUM_EXTENSIONS - 1] (if name is EXTENSIONS);
[0, NUM_SHADING_LANGUAGE_VERSIONS-1]
(if name is SHADING_LANGUAGE_VERSION)

Internal Format Queries [22.3]
void GetInternalformativ(enum target,

enum internalformat, enum pname,
sizei bufSize, int *params);

target, pname, internalformat:
 See GetInternalformati64v

void GetInternalformati64v(enum target,
enum internalformat, enum pname,
sizei bufSize, int64 *params);

target: [Table 22.2]
TEXTURE_{1D, 2D, 3D, CUBE_MAP}[_ARRAY],
TEXTURE_2D_MULTISAMPLE[_ARRAY],
TEXTURE_{BUFFER, RECTANGLE}, RENDERBUFFER

internalformat: any value

pname:
CLEAR_{BUFFER, TEXTURE},
COLOR_ENCODING,
COLOR_{COMPONENTS, RENDERABLE},
COMPUTE_TEXTURE,
DEPTH_{COMPONENTS, RENDERABLE},
FILTER, FRAMEBUFFER_BLEND,
FRAMEBUFFER_RENDERABLE[_LAYERED],
{FRAGMENT, GEOMETRY}_TEXTURE,
GET_TEXTURE_IMAGE_FORMAT,
GET_TEXTURE_IMAGE_TYPE,
IMAGE_COMPATIBILITY_CLASS,
IMAGE_PIXEL_{FORMAT, TYPE},
IMAGE_FORMAT_COMPATIBILITY_TYPE,
IMAGE_TEXEL_SIZE,
INTERNALFORMAT_{PREFERRED, SUPPORTED},
INTERNALFORMAT_{RED, GREEN, BLUE}_SIZE,
INTERNALFORMAT_{DEPTH, STENCIL}_SIZE,
INTERNALFORMAT_{ALPHA, SHARED}_SIZE,
INTERNALFORMAT_{RED, GREEN}_TYPE,
INTERNALFORMAT_{BLUE, ALPHA}_TYPE,
INTERNALFORMAT_{DEPTH, STENCIL}_TYPE,
[MANUAL_GENERATE_]MIPMAP,
MAX_COMBINED_DIMENSIONS,
MAX_{WIDTH, HEIGHT, DEPTH, LAYERS},

NUM_SAMPLE_COUNTS,
READ_PIXELS[_FORMAT, _TYPE],
SAMPLES, SHADER_IMAGE_ATOMIC,
SHADER_IMAGE_{LOAD, STORE},
SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST,
SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE,
SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST,
SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE,
SRGB_{READ, WRITE},
STENCIL_{COMPONENTS, RENDERABLE},
TESS_{CONTROL, EVALUATION}_TEXTURE,
TEXTURE_COMPRESSED[_BLOCK_SIZE],
TEXTURE_COMPRESSED_BLOCK_{HEIGHT, WIDTH}
TEXTURE_GATHER[_SHADOW],
TEXTURE_IMAGE_FORMAT,
TEXTURE_IMAGE_TYPE,
TEXTURE_{SHADOW, VIEW},
VERTEX_TEXTURE,
VIEW_COMPATIBILITY_CLASS

TransformFeedback Queries [22.4]
void GetTransformFeedbackiv(uint xfb,

enum pname, int *param);
pname: TRANSFORM_FEEDBACK_{PAUSED, ACTIVE}

void GetTransformFeedbacki_v(uint xfb,

enum pname, uint index, int *param);
pname: TRANSFORM_FEEDBACK_BUFFER_BINDING

void GetTransformFeedbacki64_v(uint xfb,
enum pname, uint index, int64 *param);

pname: TRANSFORM_FEEDBACK_BUFFER_START,
TRANSFORM_FEEDBACK_BUFFER_SIZE

www.khronos.org/opengl©2017 Khronos Group - Rev. 0717

Page 8 OpenGL 4.6 API Reference Guide

OpenGL Pipeline
A typical program that uses OpenGL
begins with calls to open a window into
the framebuffer into which the program
will draw. Calls are made to allocate a GL
context which is then associated with the
window, then OpenGL commands can be
issued.

The heavy black arrows in this illustration
show the OpenGL pipeline and indicate
data flow.

Blue blocks indicate various buffers
that feed or get fed by the OpenGL
pipeline.

Green blocks indicate fixed function
stages.

Yellow blocks indicate programmable
stages.

Texture binding

Buffer binding

T

B

Vertex & Tessellation Details
Each vertex is processed either by a vertex shader
or fixed-function vertex processing (compatibility
only) to generate a transformed vertex, then
assembled into primitives. Tessellation (if enabled)
operates on patch primitives, consisting of a fixed-
size collection of vertices, each with per-vertex
attributes and associated per-patch attributes.
Tessellation control shaders (if enabled) transform
an input patch and compute per-vertex and per-
patch attributes for a new output patch.

A fixed-function primitive generator
subdivides the patch according to
tessellation levels computed in the
tessellation control shaders or specified
as fixed values in the API (TCS disabled).
The tessellation evaluation shader
computes the position and attributes of
each vertex produced by the tessellator.

Orange blocks indicate features of the Core
specification.

Purple blocks indicate features of the
Compatibility specification.

Green blocks indicate features new or
significantly changed with OpenGL 4.x.

Geometry & Follow-on Details
Geometry shaders (if enabled) consume
individual primitives built in previous primitive
assembly stages. For each input primitive,
the geometry shader can output zero or more
vertices, with each vertex directed at a specific
vertex stream. The vertices emitted to each
stream are assembled into primitives according
to the geometry shader’s output primitive type.

Transform feedback (if active) writes selected
vertex attributes of the primitives of all vertex
streams into buffer objects attached to one or
more binding points.

Primitives on vertex stream zero are then
processed by fixed-function stages, where they
are clipped and prepared for rasterization.

Orange blocks indicate features of the Core
specification.

Purple blocks indicate features of the
Compatibility specification.

Green blocks indicate features new or
significantly changed with OpenGL 4.x.

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL Shading Language 4.60.1 Reference Card Page 9

Types [4.1]
Transparent Types
void no function return value
bool Boolean
int, uint signed/unsigned integers
float single-precision floating-point

scalar
double double-precision floating scalar
vec2, vec3, vec4 floating point vector
dvec2, dvec3, dvec4 double precision floating-point

vectors
bvec2, bvec3, bvec4 Boolean vectors
ivec2, ivec3, ivec4
uvec2, uvec3, uvec4

signed and unsigned integer
vectors

mat2, mat3, mat4 2x2, 3x3, 4x4 float matrix
mat2x2, mat2x3,
mat2x4

2-column float matrix of
2, 3, or 4 rows

mat3x2, mat3x3,
mat3x4

3-column float matrix of
2, 3, or 4 rows

mat4x2, mat4x3,
mat4x4

4-column float matrix of
2, 3, or 4 rows

dmat2, dmat3,
dmat4

2x2, 3x3, 4x4 double-precision
float matrix

dmat2x2, dmat2x3,
dmat2x4

2-col. double-precision float
matrix of 2, 3, 4 rows

dmat3x2, dmat3x3,
dmat3x4

3-col. double-precision float
matrix of 2, 3, 4 rows

dmat4x2, dmat4x3,
dmat4x4

4-column double-precision float
matrix of 2, 3, 4 rows

Floating-Point Opaque Types
sampler{1D,2D,3D}
image{1D,2D,3D}

1D, 2D, or 3D texture

samplerCube
imageCube

cube mapped texture

sampler2DRect
image2DRect

rectangular texture

sampler{1D,2D}Array
image{1D,2D}Array

1D or 2D array texture

samplerBuffer
imageBuffer

buffer texture

sampler2DMS
image2DMS

2D multi-sample texture

sampler2DMSArray
image2DMSArray

2D multi-sample array
texture

samplerCubeArray
imageCubeArray

cube map array texture

sampler1DShadow
sampler2DShadow

1D or 2D depth texture
with comparison

sampler2DRectShadow rectangular tex. / compare
sampler1DArrayShadow
sampler2DArrayShadow

1D or 2D array depth
texture with comparison

samplerCubeShadow cube map depth texture
with comparison

samplerCubeArrayShadow cube map array depth
texture with comparison

Signed Integer Opaque Types
isampler[1,2,3]D integer 1D, 2D, or 3D texture
iimage[1,2,3]D integer 1D, 2D, or 3D image
isamplerCube integer cube mapped texture
iimageCube integer cube mapped image
isampler2DRect int. 2D rectangular texture

Continue

Signed Integer Opaque Types (cont’d)
iimage2DRect int. 2D rectangular image
isampler[1,2]DArray integer 1D, 2D array texture
iimage[1,2]DArray integer 1D, 2D array image
isamplerBuffer integer buffer texture

iimageBuffer integer buffer image

isampler2DMS int. 2D multi-sample texture
iimage2DMS int. 2D multi-sample image
isampler2DMSArray int. 2D multi-sample array tex.
iimage2DMSArray int. 2D multi-sample array image

isamplerCubeArray int. cube map array texture

iimageCubeArray int. cube map array image

Unsigned Integer Opaque Types
atomic_uint uint atomic counter
usampler[1,2,3]D uint 1D, 2D, or 3D texture
uimage[1,2,3]D uint 1D, 2D, or 3D image
usamplerCube uint cube mapped texture
uimageCube uint cube mapped image
usampler2DRect uint rectangular texture
uimage2DRect uint rectangular image
usampler[1,2]DArray 1D or 2D array texture
uimage[1,2]DArray 1D or 2D array image
usamplerBuffer uint buffer texture
uimageBuffer uint buffer image
usampler2DMS uint 2D multi-sample texture
uimage2DMS uint 2D multi-sample image
usampler2DMSArray uint 2D multi-sample array tex.

Continue

Unsigned Integer Opaque Types (cont’d)
uimage2DMSArray uint 2D multi-sample array image
usamplerCubeArray uint cube map array texture
uimageCubeArray uint cube map array image

Implicit Conversions
int -> uint uvec2 -> dvec2
int, uint -> float uvec3 -> dvec3
int, uint, float -> double uvec4 -> dvec4
ivec2 -> uvec2 vec2 -> dvec2
ivec3 -> uvec3 vec3 -> dvec3
ivec4 -> uvec4 vec4 -> dvec4
ivec2 -> vec2 mat2 -> dmat2
ivec3 -> vec3 mat3 -> dmat3
ivec4 -> vec4 mat4 -> dmat4
uvec2 -> vec2 mat2x3 -> dmat2x3
uvec3 -> vec3 mat2x4 -> dmat2x4
uvec4 -> vec4 mat3x2 -> dmat3x2
ivec2 -> dvec2 mat3x4 -> dmat3x4
ivec3 -> dvec3 mat4x2 -> dmat4x2
ivec4 -> dvec4 mat4x3 -> dmat4x4

Aggregation of Basic Types
Arrays float[3] foo; float foo[3]; int a [3][2];

 // Structures, blocks, and structure members
 // can be arrays. Arrays of arrays supported.

Structures struct type-name {
 members
} struct-name[];

// optional variable declaration
Blocks in/out/uniform block-name {

// interface matching by block name

 optionally-qualified members
} instance-name[];

// optional instance name, optionally an array
Qualifiers
Storage Qualifiers [4.3]
Declarations may have one storage qualifier.

none (default) local read/write memory,
or input parameter

const read-only variable

in linkage into shader from previous stage

out linkage out of a shader to next stage

uniform linkage between a shader, OpenGL,
and the application

buffer accessible by shaders and OpenGL API

shared compute shader only, shared among work
items in a local work group

Auxiliary Storage Qualifiers
Use to qualify some input and output variables:

centroid centroid-based interpolation

sampler per-sample interpolation

patch per-tessellation-patch attributes

Interface Blocks [4.3.9]
in, out, uniform, and buffer variable
declarations can be grouped. For example:

uniform Transform {
 // allowed restatement qualifier:
 mat4 ModelViewMatrix;
 uniform mat3 NormalMatrix;
};

Layout Qualifiers [4.4]
The following table summarizes the use of layout qualifiers applied to non-
opaque types and the kinds of declarations they may be applied to.
Op = Opaque types only, FC = gl_FragCoord only, FD = gl_FragDepth only.

Layout Qualifier Qualif.
Only

Indiv.
Var. Block Block

Mem. Allowed Interfaces

shared, packed, std{140, 430} X X

uniform/buffer
{row, column}_major X X X

binding = Op X
offset = X
align = X X

location = X
uniform/buffer and
subroutine variables

location = X X X all in/out, except for
computecomponent = X X

index = X
fragment out and

subroutine functions

triangles, quads, isolines X

tessellation evaluation
in

equal_spacing,
fractional_even_spacing,

fractional_odd_spacing
X

cw, ccw X
point_mode X

points X geometry in/out
[points], lines, triangles,

{triangles, lines}_adjacency
X geometry in

invocations = X geometry in

Layout Qualifier Qualif.
Only

Indiv.
Var. Block Block

Mem. Allowed Interfaces

origin_upper_left
pixel_center_integer

FC
fragment in

early_fragment_tests X
local_size_{x, y, z} = X compute in

local_size_{x,y,z}_id = X compute in
xfb_{buffer, stride} = X X X X vertex, tessellation, and

geometry outxfb_offset = X X X
vertices = X tessellation control out

[points], line_strip,
triangle_strip

X
geometry out

max_vertices = X
stream = X X X X

depth_{any, greater, less,
unchanged}

FD fragment out

constant_id
scalar
only

const

Opaque Uniform Layout Qualifiers [4.4.6]
Used to bind opaque uniform variables to specific buffers or units.

binding = integer-constant-expression

Atomic Counter Layout Qualifiers
binding = integer-constant-expression
offset = integer-constant-expression

(Continued on next page)

The OpenGL® Shading Language is used to create
shaders for each of the programmable processors
contained in the OpenGL processing pipeline. The
OpenGL Shading Language is actually several closely
related languages. Currently, these processors are the
vertex, tessellation control, tessellation evaluation,
geometry, fragment, and compute shaders.

[n.n.n] and [Table n.n] refer to sections and tables in
the OpenGL Shading Language 4.60.1 specification at
www.khronos.org/opengl

Operators and Expressions [5.1]
The following operators are numbered in order
of precedence. Relational and equality operators
evaluate to Boolean. Also See lessThan(), equal().

1. () parenthetical grouping

2.

[]
()
 .

++ --

array subscript
function call, constructor, structure
field, selector, swizzle
postfix increment and decrement

3. ++ --
+ - ~ !

prefix increment and decrement
unary

4. * / % multiplicative
5. + - additive
6. << >> bit-wise shift
7. < > <= >= relational
8. == != equality
9. & bit-wise and

10. ^ bit-wise exclusive or

11. | bit-wise inclusive or
12. && logical and
13. ^^ logical exclusive or
14. | | logical inclusive or
15. ? : selects an entire operand

16.

= += -=
*= /=

%= <<= >>=
&= ^= |=

assignment
arithmetic assignments

17. , sequence

Vector & Scalar Components [5.5]
In addition to array numeric subscript syntax,
names of vector and scalar components are
denoted by a single letter. Components can be
swizzled and replicated. Scalars have only an x, r,
or s component.

{x, y, z, w} Points or normals

{r, g, b, a} Colors

{s, t, p, q} Texture coordinates

Preprocessor [3.3]
Preprocessor Operators

#version 450
#version 450 profile

Required when using version 4.50.
profile is core, compatibility, or es (for
ES versions 1.00, 3.00, or 3.10).

#extension
extension_name :
behavior

#extension all : behavior

• behavior: require, enable, warn,
disable

• extension_name: extension
supported by compiler, or “all”

Preprocessor Directives
#define #elif #else #endif #error #extension
#if #ifdef #ifndef #line #pragma #undef #version

Predefined Macros
__LINE__ __FILE__ Decimal integer constants. __FILE__ says

which source string is being processed.
__VERSION__ Decimal integer, e.g.: 450
GL_core_profile Defined as 1
GL_es_profile 1 if the ES profile is supported

GL_compatibility_profile Defined as 1 if the implementation
supports the compatibility profile.

GL_SPIRV Defined and equals 100 when shaders are
compiled for OpenGL SPIR-V.

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

Page 10 OpenGL Shading Language 4.60.1 Reference Guide
Operations and Constructors
Vector & Matrix [5.4.2]
.length() for matrices returns number of columns
.length() for vectors returns number of components

mat2(vec2, vec2); // 1 col./arg.
mat2x3(vec2, float, vec2, float); // col. 2
dmat2(dvec2, dvec2); // 1 col./arg.
dmat3(dvec3, dvec3, dvec3); // 1 col./arg.

Structure Example [5.4.3]
.length() for structures returns number of members
 struct light {members; };
 light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

Matrix Examples [5.6]
Examples of access components of a matrix with
array subscripting syntax:

mat4 m; // m is a matrix
m[1] = vec4(2.0); // sets 2nd col. to all 2.0
m[0][0] = 1.0; // sets upper left element to 1.0
m[2][3] = 2.0; // sets 4th element of 3rd col. to 2.0

Examples of operations on matrices and vectors:
m = f * m; // scalar * matrix component-wise
v = f * v; // scalar * vector component-wise
v = v * v; // vector * vector component-wise
m = m +/- m; // matrix +/- matrix comp.-wise
m = m * m; // linear algebraic multiply
f = dot(v, v); // vector dot product
v = cross(v, v); // vector cross product

Array Example [5.4.4]
 const float c[3];
 c.length() // will return the integer 3

Structure & Array Operations [5.7]
Select structure fields or length() method of an
array using the period (.) operator. Other operators:

. field or method selector
== != equality

= assignment
[] indexing (arrays only)

Array elements are accessed using the array
subscript operator ([]), e.g.:
 diffuseColor += lightIntensity[3]*NdotL;

Statements and Structure
Subroutines [6.1.2]
Subroutine type variables are assigned to functions
through the UniformSubroutinesuiv command in the
OpenGL API.

Declare types with the subroutine keyword:
subroutine returnType subroutineTypeName(type0

arg0,
type1 arg1, ..., typen argn);

Associate functions with subroutine types of
matching declarations by defining the functions
with the subroutine keyword and a list of
subroutine types the function matches:

subroutine(subroutineTypeName0, ...,
subroutineTypeNameN)

returnType functionName(type0 arg0,
type1 arg1, ..., typen argn){ ... }
// function body

Declare subroutine type variables with a specific
subroutine type in a subroutine uniform variable
declaration:

subroutine uniform subroutineTypeName
subroutineVarName;

Iteration and Jumps [6.3-4]
Function call by value-return
Iteration for (;;) { break, continue }

while () { break, continue }
do { break, continue } while ();

Selection if () { }
if () { } else { }
switch () { case integer: … break; …
default: … }

Entry void main()
Jump break, continue, return

(There is no ‘goto’)

Exit return in main()
discard // Fragment shader only

Qualifiers (continued)
Format Layout Qualifiers
One qualifier may be used with variables
declared as “image” to specify the image
format.

binding = integer-constant-expression,
rgba{32,16}f, rg{32,16}f, r{32,16}f,
rgba{16,8}, r11f_g11f_b10f, rgb10_a2{ui},
rg{16,8}, r{16,8}, rgba{32,16,8}i, rg{32,16,8}i,
r{32,16,8}i, rgba{32,16,8}ui, rg{32,16,8}ui,
r{32,16,8}ui, rgba{16,8}_snorm,
rg{16,8}_snorm, r{16,8}_snorm

Interpolation Qualifiers [4.5]
Qualify outputs from vertex shader and inputs
to fragment shader.

smooth perspective correct interpolation
flat no interpolation
noperspective linear interpolation

Parameter Qualifiers [4.6]
Input values copied in at function call time,
output values copied out at function return.

none (default) same as in
in for parameters passed into function
const for parameters that cannot be written to
out for parameters passed back out of of

function, but not initialized when passed in
inout for parameters passed both into and out

of a function

Precision Qualifiers [4.7]
Qualify individual variables:
 {highp, mediump, lowp} variable-declaration;
Establish a default precision qualifier:
 precision {highp, mediump, lowp}

{int, float};

Invariant Qualifiers Examples [4.8]
These are for vertex, tessellation, geometry,
and fragment languages.
#pragma STDGL
invariant(all)

force all output variables
to be invariant

invariant gl_Position; qualify a previously
declared variable

invariant centroid out
vec3 Color;

qualify as part of a
variable declaration

Precise Qualifier [4.9]
Ensures that operations are executed in stated
order with operator consistency. For example:

precise out vec4 Position = a * b + c * d;

Memory Qualifiers [4.10]
Variables qualified as “image” can have one or
more memory qualifiers.
coherent reads and writes are coherent with

other shader invocations
volatile underlying values may be changed by

other sources
restrict won’t be accessed by other code
readonly read only
writeonly write only

Specialization-Constant Qualifier [4.11]
SPIR-V specialization constants are expressed
in GLSL as const with the layout qualifier
constant_id. Function calls to user-defined
functions cannot be used to form constant
expressions. [also see 4.3.3]

Order of Qualification [4.12]
Multiple qualifiers may appear in a declaration
in any order, but must all appear before the
type. Only the layout qualifier may appear
more than once. A declaration may have
at most one storage qualifier, at most one
auxiliary storage qualifier, and at most one
interpolation qualifier.
Multiple memory qualifiers may be used. Any
rule violation will cause a compile-time error.

Built-In Constants [7.3]
The following are provided to all shaders. The
actual values are implementation-dependent, but
must be at least the value shown.
const ivec3 gl_MaxComputeWorkGroupCount =
 {65535, 65535, 65535} ;
const ivec3 gl_MaxComputeWorkGroupSize[] =
 {1024, 1024, 64};
const int gl_MaxComputeUniformComponents = 1024;
const int gl_MaxComputeTextureImageUnits = 16;
const int gl_MaxComputeImageUniforms = 8;
const int gl_MaxComputeAtomicCounters = 8;
const int gl_MaxComputeAtomicCounterBuffers = 1;
const int gl_MaxVertexAttribs = 16;
const int gl_MaxVertexUniformComponents = 1024;
const int gl_MaxVaryingComponents= 60;
const int gl_MaxVertexOutputComponents = 64;
const int gl_MaxGeometryInputComponents = 64;
const int gl_MaxGeometryOutputComponents = 128;
const int gl_MaxFragmentInputComponents = 128;
const int gl_MaxVertexTextureImageUnits = 16;
const int gl_MaxCombinedTextureImageUnits = 80;
const int gl_MaxTextureImageUnits = 16;
const int gl_MaxImageUnits = 8;
 gl_MaxCombinedImageUnitsAndFragmentOutputs = 8;
const int gl_MaxImageSamples = 0;
const int gl_MaxVertexImageUniforms= 0;
const int gl_MaxTessControlImageUniforms = 0;
const int gl_MaxTessEvaluationImageUniforms = 0;
const int gl_MaxGeometryImageUniforms = 0;
const int gl_MaxFragmentImageUniforms = 8;
const int gl_MaxCombinedImageUniforms = 8;
const int gl_MaxFragmentUniformComponents = 1024;
const int gl_MaxDrawBuffers = 8;
const int gl_MaxClipDistances = 8;
const int gl_MaxGeometryTextureImageUnits = 16;
const int gl_MaxGeometryOutputVertices = 256;
const int gl_MaxGeometryTotalOutputComponents = 1024;
const int gl_MaxGeometryUniformComponents = 1024;
const int gl_MaxGeometryVaryingComponents = 64;
const int gl_MaxTessControlInputComponents = 128;

const int gl_MaxTessControlOutputComponents = 128;
const int gl_MaxTessControlTextureImageUnits = 16;
const int gl_MaxTessControlUniformComponents = 1024;
const int gl_MaxTessControlTotalOutputComponents = 4096;
const int gl_MaxTessEvaluationInputComponents = 128;
const int gl_MaxTessEvaluationOutputComponents = 128;
const int gl_MaxTessEvaluationTextureImageUnits = 16;
const int gl_MaxTessEvaluationUniformComponents = 1024;
const int gl_MaxTessPatchComponents = 120;
const int gl_MaxPatchVertices = 32;
const int gl_MaxTessGenLevel = 64;
const int gl_MaxViewports = 16;
const int gl_MaxVertexUniformVectors = 256;
const int gl_MaxFragmentUniformVectors = 256;
const int gl_MaxVaryingVectors = 15;
const int gl_MaxVertexAtomicCounters = 0;
const int gl_MaxTessControlAtomicCounters = 0;
const int gl_MaxTessEvaluationAtomicCounters = 0;
const int gl_MaxGeometryAtomicCounters = 0;
const int gl_MaxFragmentAtomicCounters = 8;
const int gl_MaxCombinedAtomicCounters = 8;
const int gl_MaxAtomicCounterBindings = 1;
const int gl_MaxVertexAtomicCounterBuffers = 0;
const int gl_MaxTessControlAtomicCounterBuffers = 0;
const int gl_MaxTessEvaluationAtomicCounterBuffers = 0;
const int gl_MaxGeometryAtomicCounterBuffers = 0;
const int gl_MaxFragmentAtomicCounterBuffers = 1;
const int gl_MaxCombinedAtomicCounterBuffers = 1;
const int gl_MaxAtomicCounterBufferSize = 32;
const int gl_MinProgramTexelOffset = -8;
const int gl_MaxProgramTexelOffset = 7;
const int gl_MaxTransformFeedbackBuffers = 4;
 gl_MaxTransformFeedbackInterleavedComponents = 64;
const int gl_MaxCullDistances = 8;
const int gl_MaxCombinedClipAndCullDistances = 8;
const int gl_MaxSamples = 4;
const int gl_MaxVertexImageUniforms = 0;
const int gl_MaxFragmentImageUniforms = 8;
const int gl_MaxComputeImageUniforms = 8;
const int gl_MaxCombinedImageUniforms = 48;
const int gl_MaxCombinedShaderOutputResources = 16;

Built-In Variables [7]
Vertex Language

In
pu

ts

 in int gl_VertexID;
 in int gl_InstanceID;
 in int gl_BaseInstance
 in int gl_BaseVertex
 in int gl_DrawID

Ou
tp

ut
s

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
};

Tessellation Control Language

In
pu

ts

in gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in int gl_InvocationID;

Ou
tp

ut
s

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
} gl_out[];

patch out float gl_TessLevelOuter[4];
patch out float gl_TessLevelInner[2];

Tessellation Evaluation Language

In
pu

ts

in gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesIn;
in int gl_PrimitiveID;
in vec3 gl_TessCoord;
patch in float gl_TessLevelOuter[4];
patch in float gl_TessLevelInner[2];

Ou
tp

ut
s

 out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
};

Geometry Language

In
pu

ts

in gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
} gl_in[];
in int gl_PrimitiveIDIn;
in int gl_InvocationID;

Ou
tp

ut
s

out gl_PerVertex {
 vec4 gl_Position;
 float gl_PointSize;
 float gl_ClipDistance[];
 float gl_CullDistance[];
};
out int gl_PrimitiveID;
out int gl_Layer;
out int gl_ViewportIndex;

Fragment Language

In
pu

ts

 in vec4 gl_FragCoord;
 in bool gl_FrontFacing;
 in float gl_ClipDistance[];
 in float gl_CullDistance[];
 in vec2 gl_PointCoord;
 in int gl_PrimitiveID;
 in int gl_SampleID;
 in vec2 gl_SamplePosition;

in int gl_SampleMaskIn[];
 in int gl_Layer;
 in int gl_ViewportIndex;
in bool gl_HelperInvocation;

Ou
tp

ut
s

out float gl_FragDepth;
out int gl_SampleMask[];

Compute Language
More information in diagram on page 6.

In
pu

ts

Work group dimensions
in uvec3 gl_NumWorkGroups;
const uvec3 gl_WorkGroupSize;
in uvec3 gl_LocalGroupSize;

Work group and invocation IDs
in uvec3 gl_WorkGroupID;
in uvec3 gl_LocalInvocationID;

Derived variables
in uvec3 gl_GlobalInvocationID;
in uint gl_LocalInvocationIndex;

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL Shading Language 4.60.1 Reference Guide Page 11
Built-In Functions

Angle & Trig. Functions [8.1]
Functions will not result in a divide-by-zero
error. If the divisor of a ratio is 0, then results
will be undefined. Component-wise operation.
Parameters specified as angle are in units of
radians. Tf=float, vecn.

Tf radians(Tf degrees) degrees to radians

Tf degrees(Tf radians) radians to degrees

Tf sin(Tf angle) sine

Tf cos(Tf angle) cosine

Tf tan(Tf angle) tangent

Tf asin(Tf x) arc sine

Tf acos(Tf x) arc cosine

Tf atan(Tf y, Tf x)
Tf atan(Tf y_over_x) arc tangent

Tf sinh(Tf x) hyperbolic sine

Tf cosh(Tf x) hyperbolic cosine

Tf tanh(Tf x) hyperbolic tangent

Tf asinh(Tf x) hyperbolic sine

Tf acosh(Tf x) hyperbolic cosine

Tf atanh(Tf x) hyperbolic tangent

Exponential Functions [8.2]
Component-wise operation. Tf=float, vecn.
Td= double, dvecn. Tfd= Tf, Td

Tf pow(Tf x, Tf y) xy

Tf exp(Tf x) ex

Tf log(Tf x) ln

Tf exp2(Tf x) 2x

Tf log2(Tf x) log2

Tfd sqrt(Tfd x) square root

Tfd inversesqrt(Tfd x) inverse square root

Common Functions [8.3]
Component-wise operation. Tf=float, vecn. Tb=bool,
bvecn. Ti=int, ivecn. Tu=uint, uvecn.
Td= double, dvecn. Tfd= Tf, Td. Tiu= Ti, Tu.

Returns absolute value:
Tfd abs(Tfd x) Ti abs(Ti x)

Returns -1.0, 0.0, or 1.0:
Tfd sign(Tfd x) Ti sign(Ti x)

Returns nearest integer <= x:
Tfd floor(Tfd x)

Returns nearest integer with absolute value <= absolute
value of x:

Tfd trunc(Tfd x)

Returns nearest integer, implementation-dependent
rounding mode:

Tfd round(Tfd x)

Returns nearest integer, 0.5 rounds to nearest even integer:
Tfd roundEven(Tfd x)

Returns nearest integer >= x:
Tfd ceil(Tfd x)

Returns x - floor(x):
Tfd fract(Tfd x)

Returns modulus:
Tfd mod(Tfd x, Tfd y)
Tf mod(Tf x, float y)

Td mod(Td x, double y)

Returns separate integer and fractional parts:
Tfd modf(Tfd x, out Tfd i)

Returns minimum value:

Tfd min(Tfd x, Tfd y)
Tf min(Tf x, float y)
Td min(Td x, double y)

Tiu min(Tiu x, Tiu y)
Ti min(Ti x, int y)
Tu min(Tu x, uint y)

(Continue)

Common Functions (cont.)
Returns maximum value:

Tfd max(Tfd x, Tfd y)
Tf max(Tf x, float y)
Td max(Td x, double y)

Tiu max(Tiu x, Tiu y)
Ti max(Ti x, int y)
Tu max(Tu x, uint y)

Returns min(max(x, minVal), maxVal):
Tfd clamp(Tfd x, Tfd minVal, Tfd maxVal)

Tf clamp(Tf x, float minVal, float maxVal)

Td clamp(Td x, double minVal, double maxVal)

Tiu clamp(Tiu x, Tiu minVal, Tiu maxVal)

Ti clamp(Ti x, int minVal, int maxVal)

Tu clamp(Tu x, uint minVal, uint maxVal)

Returns linear blend of x and y:

Tfd mix(Tfd x, Tfd y, Tfd a)

Tf mix(Tf x, Tf y, float a)

Td mix(Td x, Td y, double a)

Ti mix(Ti x, Ti y, Ti a)

Tu mix(Tu x, Tu y, Tu a)

Components returned come from x when a components
are true, from y when a components are false:

Tfd mix(Tfd x, Tfd y, Tb a) Tb mix(Tb x, Tb y, Tb a)

Tiu mix(Tiu x, Tiu y, Tb a)

Returns 0.0 if x < edge, else 1.0:

Tfd step(Tfd edge, Tfd x)

Tf step(float edge, Tf x)
Td step(double edge, Td x)

Clamps and smoothes:

Tfd smoothstep(Tfd edge0, Tfd edge1, Tfd x)

Tf smoothstep(float edge0, float edge1, Tf x)

Td smoothstep(double edge0, double edge1, Td x)

Returns true if x is NaN:

Tb isnan(Tfd x)

Returns true if x is positive or negative infinity:

Tb isinf(Tfd x)

Returns signed int or uint value of the encoding of a float:

Ti floatBitsToInt(Tf value)

Tu floatBitsToUint(Tf value)

Returns float value of a signed int or uint encoding of a float:

 Tf intBitsToFloat(Ti value) Tf uintBitsToFloat(Tu value)

Computes and returns a*b + c. Treated as a single operation
when using precise:

Tfd fma(Tfd a, Tfd b, Tfd c)

Splits x into a floating-point significand in the range [0.5, 1.0)
and an integer exponent of 2:

Tfd frexp(Tfd x, out Ti exp)

Builds a floating-point number from x and the corresponding
integral exponent of 2 in exp:

Tfd ldexp(Tfd x, in Ti exp)

Floating-Point Pack/Unpack [8.4]
These do not operate component-wise.

Converts each component of v into 8- or 16-bit ints, packs
results into the returned 32-bit unsigned integer:

uint packUnorm2x16(vec2 v)
uint packSnorm2x16(vec2 v)

uint packUnorm4x8(vec4 v)
uint packSnorm4x8(vec4 v)

Unpacks 32-bit p into two 16-bit uints, four 8-bit uints, or
signed ints. Then converts each component to a normalized
float to generate a 2- or 4-component vector:

vec2 unpackUnorm2x16(uint p)
vec2 unpackSnorm2x16(uint p)
vec4 unpackUnorm4x8(uint p)
vec4 unpackSnorm4x8(uint p)

Packs components of v into a 64-bit value and returns a
double-precision value:

double packDouble2x32(uvec2 v)

Returns a 2-component vector representation of v:
uvec2 unpackDouble2x32(double v)

Returns a uint by converting the components of a two-
component floating-point vector:

uint packHalf2x16(vec2 v)

Returns a two-component floating-point vector:
vec2 unpackHalf2x16(uint v)

Geometric Functions [8.5]
These functions operate on vectors as vectors, not
component-wise. Tf=float, vecn. Td =double, dvecn.
Tfd= float, vecn, double, dvecn.

float length(Tf x)
double length(Td x)

length of vector

float distance(Tf p0, Tf p1)
double distance(Td p0, Td p1)

distance between points

float dot(Tf x, Tf y)
double dot(Td x, Td y)

dot product

vec3 cross(vec3 x, vec3 y)
dvec3 cross(dvec3 x, dvec3 y)

cross product

Tfd normalize(Tfd x) normalize vector to length 1

Tfd faceforward(Tfd N,
Tfd I, Tfd Nref)

returns N if dot(Nref, I) <
0, else -N

Tfd reflect(Tfd I, Tfd N) reflection direction
I - 2 * dot(N,I) * N

Tfd refract(Tfd I, Tfd N,
float eta) refraction vector

Matrix Functions [8.6]
N and M are 1, 2, 3, 4.

mat matrixCompMult(mat x, mat y)
dmat matrixCompMult(dmat x, dmat y)

component-wise
multiply

matN outerProduct(vecN c, vecN r)
dmatN outerProduct(dvecN c, dvecN r)

outer product
(where N != M)

matNxM outerProduct(vecM c, vecN r)
dmatNxM outerProduct(dvecM c, dvecN r) outer product

matN transpose(matN m)
dmatN transpose(dmatN m) transpose

matNxM transpose(matMxN m)
dmatNxM transpose(dmatMxN m)

transpose
(where N != M)

float determinant(matN m)
double determinant(dmatN m) determinant

matN inverse(matN m)
dmatN inverse(dmatN m) inverse

Vector Relational Functions [8.7]
Compare x and y component-wise. Sizes of the
input and return vectors for any particular call
must match. Tvec=vecn, uvecn, ivecn.

bvecn lessThan(Tvec x, Tvec y) <

bvecn lessThanEqual(Tvec x, Tvec y) <=
bvecn greaterThan(Tvec x, Tvec y) >
bvecn greaterThanEqual(Tvec x, Tvec y) >=
bvecn equal(Tvec x, Tvec y)
bvecn equal(bvecn x, bvecn y)

==

bvecn notEqual(Tvec x, Tvec y)
bvecn notEqual(bvecn x, bvecn y)

!=

bool any(bvecn x) true if any component of x is true
bool all(bvecn x) true if all comps. of x are true
bvecn not(bvecn x) logical complement of x

Integer Functions [8.8]
Component-wise operation. Tu=uint, uvecn.
Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn.

Adds 32-bit uint x and y, returning the sum modulo 232:
Tu uaddCarry(Tu x, Tu y, out Tu carry)

Subtracts y from x, returning the difference if non-negative,
otherwise 232 plus the difference:

Tu usubBorrow(Tu x, Tu y, out Tu borrow)

Multiplies 32-bit integers x and y, producing a 64-bit result:

void umulExtended(Tu x, Tu y, out Tu msb, out Tu lsb)

void imulExtended(Ti x, Ti y, out Ti msb, out Ti lsb)

Extracts bits [offset, offset + bits - 1] from value, returns
them in the least significant bits of the result:

Tiu bitfieldExtract(Tiu value, int offset, int bits)

(Continue)

Integer Functions (cont.)
Returns the reversal of the bits of value:

Tiu bitfieldReverse(Tiu value)

Inserts the bits least-significant bits of insert into base:
Tiu bitfieldInsert(Tiu base, Tiu insert, int offset, int bits)

Returns the number of bits set to 1:
Ti bitCount(Tiu value)

Returns the bit number of the least significant bit:
Ti findLSB(Tiu value)

Returns the bit number of the most significant bit:
Ti findMSB(Tiu value)

Texture Lookup Functions [8.9]
Available to vertex, geometry, and fragment
shaders. See tables on next page.

Atomic-Counter Functions [8.10]
Returns the value of an atomic counter.

Atomically increments c then returns its prior value:
uint atomicCounterIncrement(atomic_uint c)

Atomically decrements c then returns its prior value:
uint atomicCounterDecrement(atomic_uint c)

Atomically returns the counter for c:
uint atomicCounter(atomic_uint c)

Atomic operations performed on c, where Op may be Add,
Subtract, Min, Max, And, Or, Xor:

uint atomicCounterOp(atomic_uint c, uint data)

Atomically swap values of c and data; returns its prior value:
uint atomicCounterCompSwap(atomic_uint c, uint data)

Atomically compare values of c and compare; performs
atomic swap if equal:

uint atomicCounterCompSwap(atomic_uint c,
uint compare, uint data)

Atomic Memory Functions [8.11]
Operates on individual integers in buffer-object
or shared-variable storage. OP is Add, Min, Max,
And, Or, Xor, Exchange, or CompSwap.

uint atomicOP(coherent inout uint mem, uint data)

int atomicOP(coherent inout int mem, int data)

Image Functions [8.12]
In the image functions below, IMAGE_PARAMS
may be one of the following:

gimage1D image, int P
gimage2D image, ivec2 P
gimage3D image, ivec3 P
gimage2DRect image, ivec2 P
gimageCube image, ivec3 P
gimageBuffer image, int P
gimage1DArray image, ivec2 P
gimage2DArray image, ivec3 P
gimageCubeArray image, ivec3 P
gimage2DMS image, ivec2 P, int sample
gimage2DMSArray image, ivec3 P, int sample

Returns the dimensions of the images or images:
int imageSize(gimage{1D,Buffer} image)
ivec2 imageSize(gimage{2D,Cube,Rect,1DArray,

2DMS} image)
ivec3 imageSize(gimage{Cube,2D,2DMS}Array image)
vec3 imageSize(gimage3D image)

Returns the number of samples of the image or images
bound to image:

int imageSamples(gimage2DMS image)
int imageSamples(gimage2DMSArray image)

Loads texel at the coordinate P from the image unit image:
gvec4 imageLoad(readonly IMAGE_PARAMS)

Stores data into the texel at the coordinate P from
the image specified by image:

void imageStore(writeonly IMAGE_PARAMS, gvec4 data)

(Continued on next page)

 Type Abbreviations for Built-in Functions: In vector types, n is 2, 3, or 4.
Tf=float, vecn. Td =double, dvecn. Tfd= float, vecn, double, dvecn. Tb= bool, bvecn.
Tu=uint, uvecn. Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn. Tvec=vecn, uvecn, ivecn.

Within any one function, type sizes and dimensionality must correspond after implicit type
conversions. For example, float round(float) is supported, but float round(vec4) is not.

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

Page 12 OpenGL Shading Language 4.60.1 Reference Guide

Texture Functions [8.9]
Available to vertex, geometry, and fragment
shaders. gvec4=vec4, ivec4, uvec4.
gsampler* =sampler*, isampler*, usampler*.

The P argument needs to have enough
components to specify each dimension, array
layer, or comparison for the selected sampler.
The dPdx and dPdy arguments need enough
components to specify the derivative for each
dimension of the sampler.

Texture Query Functions [8.9.1]
textureSize functions return dimensions of lod
(if present) for the texture bound to sampler.
Components in return value are filled in with the
width, height, depth of the texture. For array
forms, the last component of the return value is
the number of layers in the texture array.

{int,ivec2,ivec3} textureSize(
gsampler{1D[Array],2D[Rect,Array],Cube} sampler[,
int lod])

{int,ivec2,ivec3} textureSize(
gsampler{Buffer,2DMS[Array]}sampler)

{int,ivec2,ivec3} textureSize(
sampler{1D, 2D, 2DRect,Cube[Array]}Shadow sampler[,
int lod])

ivec3 textureSize(samplerCubeArray sampler, int lod)

textureQueryLod functions return the mipmap
array(s) that would be accessed in the x
component of the return value. Returns the
computed level of detail relative to the base level
in the y component of the return value.

vec2 textureQueryLod(
gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler,
{float,vec2,vec3} P)

vec2 textureQueryLod(
sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler,
{float,vec2,vec3} P)

textureQueryLevels functions return the number
of mipmap levels accessible in the texture
associated with sampler.

int textureQueryLevels(
gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler)

int textureQueryLevels(
sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler)

textureSamples returns the number of samples
of the texture.

int textureSamples(gsampler2DMS sampler)

int textureSamples(gsampler2DMSArray sampler)

Texel Lookup Functions [8.9.2]
Use texture coordinate P to do a lookup in the texture
bound to sampler. For shadow forms, compare is
used as Dref and the array layer comes from P.w.
For non-shadow forms, the array layer comes from
the last component of P.
gvec4 texture(

gsampler{1D[Array],2D[Array,Rect],3D,Cube[Array]} sampler,
{float,vec2,vec3,vec4} P [, float bias])

float texture(
sampler{1D[Array],2D[Array,Rect],Cube}Shadow sampler,
{vec3,vec4} P [, float bias])

float texture(gsamplerCubeArrayShadow sampler, vec4 P,
float compare)

Texture lookup with projection.

gvec4 textureProj(gsampler{1D,2D[Rect],3D} sampler,
vec{2,3,4} P [, float bias])

float textureProj(sampler{1D,2D[Rect]}Shadow sampler,
vec4 P [, float bias])

Texture lookup as in texture but with explicit LOD.

gvec4 textureLod(
gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler,
{float,vec2,vec3} P, float lod)

float textureLod(sampler{1D[Array],2D}Shadow sampler,
vec3 P, float lod)

Offset added before texture lookup.

gvec4 textureOffset(
gsampler{1D[Array],2D[Array,Rect],3D} sampler,
{float,vec2,vec3} P, {int,ivec2,ivec3} offset [, float bias])

float textureOffset(
sampler{1D[Array],2D[Rect,Array]}Shadow sampler,
{vec3, vec4} P, {int,ivec2} offset [, float bias])

Use integer texture coordinate P to lookup a single
texel from sampler.

gvec4 texelFetch(
gsampler{1D[Array],2D[Array,Rect],3D} sampler,
{int,ivec2,ivec3} P[, {int,ivec2} lod])

gvec4 texelFetch(gsampler{Buffer, 2DMS[Array]} sampler,
{int,ivec2,ivec3} P[, int sample])

Fetch single texel with offset added before texture lookup.

gvec4 texelFetchOffset(
gsampler{1D[Array],2D[Array],3D} sampler,
{int,ivec2,ivec3} P, int lod, {int,ivec2,ivec3} offset)

gvec4 texelFetchOffset(
gsampler2DRect sampler, ivec2 P, ivec2 offset)

Projective texture lookup with offset added before
texture lookup.

gvec4 textureProjOffset(gsampler{1D,2D[Rect],3D} sampler,
vec{2,3,4} P, {int,ivec2,ivec3} offset [, float bias])

float textureProjOffset(
sampler{1D,2D[Rect]}Shadow sampler, vec4 P,
{int,ivec2} offset [, float bias])

Offset texture lookup with explicit LOD.

gvec4 textureLodOffset(
gsampler{1D[Array],2D[Array],3D} sampler,
{float,vec2,vec3} P, float lod, {int,ivec2,ivec3} offset)

float textureLodOffset(
sampler{1D[Array],2D}Shadow sampler, vec3 P, float lod,
{int,ivec2} offset)

Projective texture lookup with explicit LOD.

gvec4 textureProjLod(gsampler{1D,2D,3D} sampler,
vec{2,3,4} P, float lod)

float textureProjLod(sampler{1D,2D}Shadow sampler,
vec4 P, float lod)

Offset projective texture lookup with explicit LOD.

gvec4 textureProjLodOffset(gsampler{1D,2D,3D} sampler,
vec{2,3,4} P, float lod, {int, ivec2, ivec3} offset)

float textureProjLodOffset(sampler{1D,2D}Shadow sampler,
vec4 P, float lod, {int, ivec2} offset)

Texture lookup as in texture but with explicit gradients.

gvec4 textureGrad(
gsampler{1D[Array],2D[Rect,Array],3D,Cube[Array]} sampler,
{float, vec2, vec3,vec4} P, {float, vec2, vec3} dPdx,
{float, vec2, vec3} dPdy)

float textureGrad(
sampler{1D[Array],2D[Rect,Array], Cube}Shadow sampler,
{vec3,vec4} P, {float,vec2} dPdx, {float,vec2, vec3} dPdy)

Texture lookup with both explicit gradient and offset.

gvec4 textureGradOffset(
gsampler{1D[Array],2D[Rect,Array],3D} sampler,
{float,vec2,vec3} P, {float,vec2,vec3} dPdx,
{float,vec2,vec3} dPdy, {int,ivec2,ivec3} offset)

float textureGradOffset(
sampler{1D[Array],2D[Rect,Array]}Shadow sampler,
{vec3,vec4} P, {float,vec2} dPdx, {float,vec2}dPdy,
{int,ivec2} offset)

Texture lookup both projectively as in
textureProj, and with explicit gradient as in
textureGrad.

gvec4 textureProjGrad(gsampler{1D,2D[Rect],3D} sampler,
{vec2,vec3,vec4} P, {float,vec2,vec3} dPdx,
{float,vec2,vec3} dPdy)

float textureProjGrad(sampler{1D,2D[Rect]}Shadow sampler,
vec4 P, {float,vec2} dPdx, {float,vec2} dPdy)

Texture lookup projectively and with explicit gradient
as in textureProjGrad, as well as with offset as in
textureOffset.

gvec4 textureProjGradOffset(
gsampler{1D,2D[Rect],3D} sampler, vec{2,3,4} P,
{float,vec2,vec3} dPdx, {float,vec2,vec3} dPdy,
{int,ivec2,ivec3} offset)

float textureProjGradOffset(
sampler{1D,2D[Rect]Shadow} sampler, vec4 P,
{float,vec2} dPdx, {float,vec2} dPdy, {ivec2,int,vec2} offset)

Texture Gather Instructions [8.9.3]
These functions take components of a floating-point
vector operand as a texture coordinate, determine
a set of four texels to sample from the base level of
detail of the specified texture image, and return one
component from each texel in a four-component
result vector.

gvec4 textureGather(
gsampler{2D[Array,Rect],Cube[Array]} sampler,
{vec2,vec3,vec4} P [, int comp])

vec4 textureGather(
sampler{2D[Array,Rect],Cube[Array]}Shadow sampler,
{vec2,vec3,vec4} P, float refZ)

Texture gather as in textureGather by offset as
described in textureOffset except minimum and
maximum offset values are given by
{MIN, MAX}_PROGRAM_TEXTURE_GATHER_OFFSET.

gvec4 textureGatherOffset(gsampler2D[Array,Rect] sampler,
{vec2,vec3} P, ivec2 offset [, int comp])

vec4 textureGatherOffset(
sampler2D[Array,Rect]Shadow sampler,
{vec2,vec3} P, float refZ, ivec2 offset)

Texture gather as in textureGatherOffset except offsets
determines location of the four texels to sample.

gvec4 textureGatherOffsets(gsampler2D[Array,Rect] sampler,
{vec2,vec3} P, ivec2 offsets[4] [, int comp])

vec4 textureGatherOffsets(
sampler2D[Array,Rect]Shadow sampler,
{vec2,vec3} P, float refZ, ivec2 offsets[4])

Built-In Functions (cont.)
Image Functions (cont.)
Adds the value of data to the contents of the selected texel:

uint imageAtomicAdd(coherent IMAGE_PARAMS, uint data)
int imageAtomicAdd(coherent IMAGE_PARAMS, int data)

Takes the minimum of the value of data and the contents
of the selected texel:

uint imageAtomicMin(coherent IMAGE_PARAMS, uint data)
int imageAtomicMin(coherent IMAGE_PARAMS, int data)

Takes the maximum of the value data and the contents
of the selected texel:

uint imageAtomicMax(coherent IMAGE_PARAMS, uint data)
int imageAtomicMax(coherent IMAGE_PARAMS, int data)

Performs a bit-wise AND of the value of data and the
contents of the selected texel:

uint imageAtomicAnd(coherent IMAGE_PARAMS, uint data)
int imageAtomicAnd(coherent IMAGE_PARAMS, int data)

Performs a bit-wise OR of the value of data and the
contents of the selected texel:

uint imageAtomicOr(coherent IMAGE_PARAMS, uint data)
int imageAtomicOr(coherent IMAGE_PARAMS, int data)

Performs a bit-wise exclusive OR of the value of data and
the contents of the selected texel:

uint imageAtomicXor(coherent IMAGE_PARAMS, uint data)
int imageAtomicXor(coherent IMAGE_PARAMS, int data)

(Continue)

Image Functions (cont.)
Copies the value of data:

uint imageAtomicExchange(coherent IMAGE_PARAMS,
uint data)

int imageAtomicExchange(coherent IMAGE_PARAMS,
int data)

int imageAtomicExchange(coherent IMAGE_PARAMS,
float data)

Compares the value of compare and contents of selected
texel. If equal, the new value is given by data; otherwise,
it is taken from the original value loaded from texel:

uint imageAtomicCompSwap(coherent IMAGE_PARAMS,
uint compare, uint data)

int imageAtomicCompSwap(coherent IMAGE_PARAMS,
int compare, int data)

Fragment Processing Functions [8.13]
Available only in fragment shaders.
Tf=float, vecn.

Derivative fragment-processing functions

Tf dFdx(Tf p)
Tf dFdy(Tf p)

derivative in x and y, either
fine or coarse derivatives

Tf dFdxFine(Tf p)
Tf dFdyFine(Tf p)

fine derivative in x and y per
pixel-row/column derivative

Tf dFdxCoarse(Tf p)
Tf dFdyCoarse(Tf p)

coarse derivative in x and y per
2x2-pixel derivative

Tf fwidth(Tf p)
Tf fwidthFine(Tf p)
Tf fwidthCoarse(Tf p)

sum of absolute values of x and y
derivatives

Interpolation fragment-processing functions
Return value of interpolant sampled inside pixel and the
primitive:

Tf interpolateAtCentroid(Tf interpolant)

Return value of interpolant at location of sample # sample:
Tf interpolateAtSample(Tf interpolant, int sample)

Return value of interpolant sampled at fixed offset offset
from pixel center:

Tf interpolateAtOffset(Tf interpolant, vec2 offset)

Noise Functions [8.14]
Returns noise value. Available to fragment, geometry,
and vertex shaders. n is 2, 3, or 4:
float noise1(Tf x) vecn noisen(Tf x)

Geometry Shader Functions [8.15]
Only available in geometry shaders.
Emits values of output variables to current output
primitive stream stream:

void EmitStreamVertex(int stream)

Completes current output primitive stream stream and
starts a new one:

void EndStreamPrimitive(int stream)

Completes output primitive and starts a new one:
void EndPrimitive()

Emits values of output variables to the current output
primitive:

void EmitVertex()

Other Shader Functions [8.16-17]
See diagram on page 11 for more information.

Synchronizes across shader invocations:
void barrier()

Controls ordering of memory transactions issued by a
single shader invocation:

void memoryBarrier()

Controls ordering of memory transactions as viewed by
other invocations in a compute work group:

void groupMemoryBarrier()

Order reads and writes accessible to other invocations:
void memoryBarrierAtomicCounter()
void memoryBarrierShared()
void memoryBarrierBuffer()
void memoryBarrierImage()

Shader Invocation Group Functions
[8.18]
Available for multiple shader invocations grouped
into a single SIMD invocation group.

Returns true if value is true for (any active invocation, all
active invocations) in the group:
 bool allInvocationsEqual(bool value)
 bool allInvocation(bool value)

Returns true if value is the same for all active
invocations in the group:
 bool allInvocationsEqual(bool value)

www.khronos.org/opengl ©2017 Khronos Group - Rev. 0717

OpenGL 4.6 API Reference Guide Page 13

OpenGL is a registered trademark of Silicon Graphics International, used under license by Khronos Group.
The Khronos Group is an industry consortium creating open standards for the authoring and acceleration
of parallel computing, graphics and dynamic media on a wide variety of platforms and devices.
See www.khronos.org to learn more about the Khronos Group.
See www.opengl.org to learn more about OpenGL.

OpenGL API and OpenGL Shading Language Reference Card Index
The following index shows each item included on this card along with the page on which it is described. The color of the row in the table below is the color of the pane to which you should refer..
A
ActiveShaderProgram 2
ActiveTexture 2
AttachShader 1
Android Platform 9

B
BeginConditionalRender 5
BeginQuery 1, 6
BeginQueryIndexed 1
BeginTransformFeedback 5
BindAttribLocation 5
BindBuffer* 1
BindFragDataLocation* 5
BindFramebuffer 4
BindImageTexture(s) 4
BindProgramPipeline 2
BindRenderbuffer 4
BindSampler(s) 2
BindTexture* 2
BindTransformFeedback 5
BindVertex* 4
BlendColor 6
BlendEquation* 6
BlendFunc* 6
Blit[Named]Framebuffer 6
BufferStorage 1
Buffer[Sub]Data 1

C
Check[Named]FramebufferStatus 4
ClampColor 6
Clear 6
ClearBuffer[Sub]Data 1
ClearBuffer* 6
ClearColor 6
ClearDepth* 6
ClearNamedBuffer[Sub]Data 1
ClearNamedFramebuffer* 6
ClearStencil 6
ClearTexImage 4
ClearTexSubImage 4
ClientWaitSync 1
ClipControl 5
ColorMask* 6
Command Syntax 1
CompileShader 1
CompressedTex[Sub]Image* 3
CompressedTextureSubImage* 3
CopyBufferSubData 1
CopyImageSubData 6
CopyNamedBufferSubData 1
CopyTex[Sub]Image* 3
CopyTextureSubImage* 3
CreateBuffers 1
CreateFramebuffers 4
CreateProgram 1
CreateProgramPipelines 2
CreateQueries 1
CreateRenderbuffers 4
CreateSamplers 2
CreateShader 1
CreateShaderProgramv 2
CreateTextures 2
CreateTransformFeedbacks 5
CreateVertexArrays 4
CullFace 5

D
DebugMessage* 6
DeleteBuffers 1
DeleteFramebuffers 4
DeleteProgram* 2
DeleteProgramPipelines 2
DeleteQueries 1
DeleteRenderbuffers 4
DeleteSamplers 2
DeleteShader 1
DeleteSync 1
DeleteTextures 2
DeleteTransformFeedbacks 5
DeleteVertexArrays 4

DepthFunc 6
DepthMask 6
DepthRange* 5
DetachShader 2
DisableVertexArrayAttrib 5
DisableVertexAttribArray 5
DispatchCompute* 5
DrawArrays[Indirect] 5
DrawArraysInstanced[BaseInstance] 5
DrawBuffer(s) 6
DrawElements* 5
DrawRangeElements[BaseVertex] 5
DrawTransformFeedback* 5

E
EnableVertexArrayAttrib 5
EnableVertexAttribArray 5
EndConditionalRender 5
EndQuery 6
EndQuery[Indexed] 1
EndTransformFeedback 5
Errors 1

F
Fences 1
FenceSync 1
Finish 1
Flatshading 5
Flush 1
FlushMapped[Named]BufferRange 1
FramebufferParameteri 4
FramebufferRenderbuffer 4
FramebufferTexture* 4
FrontFace 5

G
GenBuffers 1
Generate[Texture]Mipmap 3
GenFramebuffers 4
GenProgramPipelines 2
GenQueries 1
GenRenderbuffers 4
GenSamplers 2
GenTextures 2
GenTransformFeedbacks 5
GenVertexArrays 4
GetActiveAtomicCounterBufferiv 2
GetActiveAttrib 5
GetActiveSubroutine* 2
GetActiveUniform* 2
GetAttachedShaders 2
GetAttribLocation 5
GetBoolean* 6
GetBufferParameteri[64]v 1
GetBufferPointerv 1
GetBufferSubData 1
GetCompressedTex* 3
GetDebugMessageLog 6
GetDouble* 6
GetError 1
GetFloat* 6
GetFragData* 5
GetFramebuffer[Attachment]Parameter* 4
GetGraphicsResetStatus 1
GetInteger[64]v 1
GetInteger64i_v 6
GetInteger64v 6
GetIntegeri_v 6
GetIntegerv 1
GetIntegerv 6
GetInternalformativ* 7
GetMultisamplefv 5
GetNamedBuffer* 1
GetNamedFramebuffer* 4
GetNamedRenderbufferParameteriv 4
GetnCompressedTexImage 3
GetnTexImage 3
GetnUniform{f d i ui}v 2
GetObject[Ptr]Label 6
GetPointerv 6
GetProgramBinary 2
GetProgramInfoLog 2

GetProgramInterfaceiv 2
GetProgramiv 2
GetProgramPipeline* 2
GetProgramResource* 2
GetProgramStageiv 2
GetQuery* 1
GetRenderbufferParameteriv 4
GetSamplerParameter* 2
GetShaderInfoLog 2
GetShaderiv 2
GetShaderPrecisionFormat 2
GetShaderSource 2
GetString 6-7
GetSubroutineIndex 2
GetSubroutineUniformLocation 2
GetSynciv 1
GetTexImage 3
GetTex[Level]Parameter* 3
GetTextureImage 3
GetTextureLevelParameter{i f}v 3
GetTextureParameter* 3
GetTextureSubImage 3
GetTransformFeedback* 7
GetTransformFeedbackVarying 5
GetUniform* 2
GetVertexArray* 5
GetVertexAttrib* 5

H-I
Hint 6
InvalidateBufferData 1
InvalidateBufferSubData 1
InvalidateFramebuffer 6
InvalidateNamedFramebuffer* 6
InvalidateSubFramebuffer 6
InvalidateTexImage 4
InvalidateTexSubImage 4
IsBuffer 1
IsFramebuffer 4
IsProgram[Pipeline] 2
IsQuery 1
IsRenderbuffer 4
IsSampler 2
IsShader 1
IsSync 1
IsTexture 2
IsTransformFeedback 5
IsVertexArray 4

L
LineWidth 5
LinkProgram 2

M
Macros 9
MapBuffer[Range] 1
MapNamedBuffer* 1
MemoryBarrier 2
MemoryBarrierByRegion 2
MinSampleShading 5
MultiDrawArrays* 5
MultiDrawElements* 5
Multisampling 5

N
NamedBuffer[Sub]Data 1
NamedBufferStorage 1
NamedFramebufferDrawBuffer(s) 6
NamedFramebufferParameteri 4
NamedFramebufferReadBuffer 6
NamedFramebufferRenderbuffer 4
NamedFramebufferTexture* 4
NamedRenderbufferStorage* 4

O
ObjectLabel 6
ObjectPtrLabel 6
OpenGL Pipeline 8
Operations and Constructors 10
Operators and Expressions 9

P
PatchParameterfv 5
PatchParameteri 4

PauseTransformFeedback 5
PixelStore{i f} 2
PointParameter* 5
PointSize 5
PolygonMode 5
PolygonOffset 5
PolygonOffsetClamp 5
PopDebugGroup 6
Preprocessor 9
PrimitiveRestartIndex 5
ProgramBinary 2
ProgramParameteri 2
ProgramUniform* 2
ProvokingVertex 5
PushDebugGroup 6

Q-R
Qualifiers 9-10
QueryCounter 1
ReadBuffer 6
ReadnPixels 6
ReadPixels 6
ReleaseShaderCompiler 1
RenderbufferStorage 4
RenderbufferStorageMultisample 4
ResumeTransformFeedback 5

S
SampleCoverage 6
SampleMaski 6
SamplerParameter* 2
Scissor 6
ShaderBinary 1
ShaderSource 1
ShaderStorageBlockBinding 2
Shading Language 9-12
SpecializeShader 1
State and State Requests 6-7
StencilFunc* 6
StencilMask* 6
StencilOp* 6
Synchronization 1
Synchronous Debug Output 6

T
TexBuffer[Range] 3
TexImage*[Multisample] 3
TexParameter* 3
TexStorage*[Multisample] 3-4
TexSubImage* 3
TextureBarrier 4
TextureBuffer[Range] 3
TextureParameter* 3
TextureStorage*[Multisample] 4
TextureSubImage* 3
TextureView 3
Timer Queries 1
TransformFeedbackBufferBase 5
TransformFeedbackBufferRange 5
TransformFeedbackVarying(s) 5
Types 9

U
Uniform* 2
UniformBlockBinding 2
UniformMatrix* 2
UniformSubroutinesuiv 2
Unmap[Named]Buffer 1
UseProgram[Stages] 2

V-W
ValidateProgram[Pipeline] 5
Variables, built-in 10
VertexArrayAttrib*Format 4
VertexArrayAttribBindin 5
VertexArrayBindingDivisor 5
VertexArrayElementBuffer 4
VertexArrayVertexBuffer(s) 4
VertexAttrib* 4-5
VertexBindingDivisor 5
Viewport* 5
WaitSync 1

