OpenGL 4.6 API Reference Guide

OpenGLe is the only cross-platform graphics APl that enables
developers to create high-performance, visually-compelling graphics
software applications, in markets such as CAD, content creation,
energy, entertainment, game development, manufacturing, medical,

and virtual reality.

Specifications are available at www.

Command Execution [2.3]

OpenGL Errors [2.3.1]
enum GetError(void);

Graphics Reset Recovery [2.3.2]
enum GetGraphicsResetStatus(void);
Returns: NO_ERROR, GUILTY_CONTEXT_RESET,
{INNOCENT, UNKNOWN}_CONTEXT_RESET

GetIntegerv(RESET_NOTIFICATION_STRATEGY);
Returns: NO_RESET_NOTIFICATION,
LOSE_CONTEXT_ON_RESET
Flush and Finish [2.3.3]
void Flush(void); void Finish(void);

khronos.org/opengl

Floating-Point Numbers [2.3.4]

16-Bit 1-bit sign, 5-bit exp., 10-bit mant.

Unsigned 11-Bit | no sign bit, 5-bit exp., 6-bit mant.

penGL. KHRCONOS

GROUP

o See FunctionName refers to functions on this reference card.
¢ [n.n.n] and [Table n.n] refer to sections and tables in the OpenGL 4.6 core specification.
o [n.n.n] refers to sections in the OpenGL Shading Language 4.60.1 specification.

OpenGL Command Syntax [2.2]
GL commands are formed from a return type, a name, and optionally up to 4 characters
(or character pairs) from the Command Letters table (to the left), as shown by the prototype:

Unsigned 10-Bit | no sign bit, 5-bit exp., 5-bit mant.

Command Letters [Tables 2.1, 2.2]
Where a letter denotes a type in a function
name, T within the prototype is the same type.

b- byte (8 bits) ub- ubyte (8 bits)

s- short (16 bits) us- ushort (16 bits)

i- int(32bits) ui- uint (32 bits)

‘ return-type Name{1234}b s ii64 f d ub us ui ui64}{v} (fargs,] Targl, ..., TargN [, args));

The arguments enclosed in brackets ([args ,] and [, args]) may or may not be present.

The argument type T and the number N of arguments may be indicated by the command name
suffixes. Nis 1, 2, 3, or 4 if present. If “v” is present, an array of N items is passed by a pointer.
For brevity, the OpenGL documentation and this reference may omit the standard prefixes.

The actual names are of the forms: glFunctionName(), GL_CONSTANT, GLtype

i64- int64 (64bits) ui64- uint64 (64 bits)
f- float (32 bits) d- double (64 bits)

Timer Queries [4.3]
Timer queries track the amount of time needed
to fully complete a set of GL commands.

void QueryCounter(uint id, TIMESTAMP);
void GetIntegerv(TIMESTAMP, int *data);
void GetInteger64v(TIMESTAMP, int64 *data);

Synchronization

Sync Objects and Fences [4.1]

void DeleteSync(sync sync);

sync FenceSync(enum condition, bitfield flags);

condition: SYNC_GPU_COMMANDS_COMPLETE
flags: must be 0

Buffer Objects [s]

void GenBuffers(sizei n, uint *buffers);
void CreateBuffers(sizei n, uint *buffers);
void DeleteBuffers(sizei n, const uint *buffers);

Create and Bind Buffer Objects [6.1]
void BindBuffer(enum target, uint buffer);
target: [Table 6.1] {ARRAY, UNIFORM}_BUFFER,
{ATOMIC_COUNTER, QUERY}_BUFFER,
COPY_{READ, WRITE}_BUFFER,
{DISPATCH, DRAW}_INDIRECT_BUFFER,
{ELEMENT_ARRAY, TEXTURE}_BUFFER,
PIXEL_[UNJPACK_BUFFER,
{PARAMETER, SHADER_STORAGE}_BUFFER,
TRANSFORM_FEEDBACK_BUFFER

void BindBufferRange(enum target,
uint index, uint buffer, intptr offset,
sizeiptr size);
target: ATOMIC_COUNTER_BUFFER,
{SHADER_STORAGE, UNIFORM}_BUFFER,
TRANSFORM_FEEDBACK_BUFFER

void BindBufferBase(enum target,
uint index, uint buffer);
target: See BindBufferRange

void BindBuffersRange(enum target,
uint first, sizei count, const uint *buffers,
const intptr *offsets, const sizeiptr *size);
target: See BindBufferRange

void BindBuffersBase(enum target,
uint first, sizei count,
const uint *buffers);
target: See BindBufferRange

Create/Modify Buffer Object Data [6.2]
void BufferStorage(enum target,
sizeiptr size, const void *data,
bitfield flags);
target: See BindBuffer
flags: Bitwise OR of MAP_{READ, WRITE}_BIT,
{DYNAMIC, CLIENT}_STORAGE_BIT,
MAP_{COHERENT, PERSISTENT}_BIT
void NamedBufferStorage(uint buffer,
sizeiptr size, const void *data,
bitfield flags);
flags: See BufferStorage

void BufferData(enum target, sizeiptr size,
const void *data, enum usage);
target: See BindBuffer
usage: DYNAMIC_{DRAW, READ, COPY},
{STATIC, STREAM}_{DRAW, READ, COPY}

void NamedBufferData(uint buffer, sizeiptr
size, const void *data, enum usage);

©2017 Khronos Group - Rev. 0717

Waiting for Sync Objects [4.1.1]
enum ClientWaitSync(sync sync,
bitfield flags, uint64 timeout_ns);
flags: SYNC_FLUSH_COMMANDS_BIT, or zero
void WaitSync(sync sync, bitfield flags,
uint64 timeout);
timeout: TIMEOUT_IGNORED

Sync Object Queries [4.1.3]
void GetSynciv(sync sync, enum pname,

sizei bufSize, sizei *length, int *values);
pname: OBJECT_TYPE, SYNC_{STATUS, CONDITION, FLAGS}

boolean IsSync(sync sync);

void BufferSubData(enum target,
intptr offset, sizeiptr size,
const void *data);
target: See BindBuffer

void NamedBufferSubData(uint buffer,

intptr offset, sizeiptr size,
const void *data);

void ClearBufferSubData(enum target,

enum internalFormat, intptr offset,
sizeiptr size, enum format, enum type,
const void *data);

target: See BindBuffer

internalformat: See TexBuffer on pg. 3 of this card

format: RED, GREEN, BLUE, RG, RGB, RGBA, BGR,
BGRA, {RED, GREEN, BLUE, RG, RGB}_INTEGER,
{RGBA, BGR, BGRA} _INTEGER, STENCIL_INDEX,
DEPTH_{COMPONENT, STENCIL}

void ClearNamedBufferSubData(

uint buffer, enum internalFormat,
intptr offset, sizeiptr size, enum format,
enum type, const void *data);

internalformat, format, type: See
ClearBufferSubData

void ClearBufferData(enum target,

enum internalformat, enum format,
enum type, const void *data);

target, internalformat, format: See
ClearBufferSubData

void ClearNamedBufferData(uint buffer,

enum internalformat, enum format,
enum type, const void *data);
internalformat, format, type: See ClearBufferData

Map/Unmap Buffer Data [6.3]
void *MapBufferRange(enum target,

intptr offset, sizeiptr length,
bitfield access);

target: See BindBuffer

access: The Bitwise OR of MAP_X_BIT, where X may
be READ, WRITE, PERSISTENT, COHERENT,
INVALIDATE_{BUFFER, RANGE},
FLUSH_EXPLICIT, UNSYNCHRONIZED

void *MapNamedBufferRange(uint buffer,

intptr offset, sizeiptr length,
bitfield access);

target: See BindBuffer

access: See MapBufferRange

void EndQuerylndexed(enum target,

Asynchronous Queries [4.2,4.2.1] i o,

void GenQueries(sizei n, uint *ids);
boolean IsQuery(uint id);
void GetQueryiv(enum target, enum pname,
int *params);
target: See BeginQuery, plus TIMESTAMP
pname: CURRENT_QUERY, QUERY_COUNTER_BITS

void GetQuerylndexediv(enum target,
uint index, enum pname, int *params);
target: See BeginQuery, plus TIMESTAMP
pname: CURRENT_QUERY, QUERY_COUNTER_BITS

void GetQueryObjectiv(uint id, enum pname,
int *params);

void GetQueryObjectuiv(uint id,
enum pname, uint *params);

void GetQueryObjecti64v(uint id,
enum pname, int64 *params);

void GetQueryObjectui64v(uint id,
enum pname, uint64 *params);
pname: QUERY_TARGET,
QUERY_RESULT[_NO_WAIT, _AVAILABLE]

void CreateQueries(enum target, sizei n,
uint *ids);
target: See BeginQuery, plus TIMESTAMP
void DeleteQueries(sizei n, const uint *ids);

void BeginQuery(enum target, uint id);
target: ANY_SAMPLES_PASSED[_CONSERVATIVE],

PRIMITIVES_GENERATED, SAMPLES_PASSED,
TIME_ELAPSED, {PRIMITIVES, VERTICES}_SUBMITTED,
TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN,
TRANSFORM_FEEDBACK_[STREAM_]OVERFLOW,
{COMPUTE, VERTEX}_SHADER_INVOCATIONS,
{FRAGMENT, GEOMETRY}_SHADER_INVOCATIONS,
TESS_EVALUATION_SHADER_INVOCATIONS,
TESS_CONTROL_SHADER_PATCHES,
GEOMETRY_SHADER_PRIMITIVES_EMITTED,
CLIPPING_{INPUT, OUTPUT}_PRIMITIVES

void BeginQueryIndexed(enum target,
uint index, uint id);
target: See BeginQuery

void EndQuery(enum target);

void GetBufferParameteri[64]v(
enum target, enum pname, int[64]*data);
target: See BindBuffer
pname: [Table 6.2] BUFFER_SIZE, BUFFER_USAGE,
BUFFER_{ACCESS[_FLAGS]}, BUFFER_MAPPED,
BUFFER_MAP_{OFFSET, LENGTH},
BUFFER_{IMMUTABLE_STORAGE, ACCESS_FLAGS}

void GetNamedBufferParameteri[64]v(
uint buffer, enum pname, int[64]*data);

void GetBufferPointerv(enum target,
enum pname, const void **params);
target: See BindBuffer
pname: BUFFER_MAP_POINTER
void GetNamedBufferPointerv(uint buffer,

enum pname, const void **params);
pname: BUFFER_MAP_POINTER

void *MapBuffer(enum target, enum access);
access: See MapBufferRange

void *MapNamedBuffer(uint buffer,
enum access);

access: See MapBufferRange

void FlushMappedBufferRange(intptr offset,
sizeiptr length);

void FlushMappedNamedBufferRange(
uint buffer, intptr offset, sizeiptr length);

boolean UnmapBuffer(enum target);
target: See BindBuffer

boolean UnmapNamedBuffer(uint buffer);
Invalidate Buffer Data [6.5]

void InvalidateBufferSubData(uint buffer,
intptr offset, sizeiptr length);

void InvalidateBufferData(uint buffer);
Buffer Object Queries [6, 6.7]
boolean IsBuffer(uint buffer);

void GetBufferSubData(enum target,
intptr offset, sizeiptr size, void *data);
target: See BindBuffer

void GetNamedBufferSubData(uint buffer,
intptr offset, sizeiptr size, void *data);

Copy Between Buffers [6.6]
void CopyBufferSubData(enum readTarget,
enum writeTarget, intptr readOffset,
intptr writeOffset, sizeiptr size);
readTarget and writeTarget: See BindBuffer

void CopyNamedBufferSubData(
uint readBuffer, uint writeBuffer,
intptr readOffset, intptr writeOffset,
sizeiptr size);

boolean IsShader(uint shader);

void ShaderBinary(sizei count,
const uint *shaders, enum binaryformat,
const void *binary, sizei length);

void SpecializeShader(uint shader,
const char *pEntryPoint,
uint numSpecializationConstants,
const uint *pConstantindex,
const int *pConstantValue);

Shaders and Programs

Shader Objects [7.1-2]
uint CreateShader(enum type);
type: {COMPUTE, FRAGMENT}_SHADER,
{GEOMETRY, VERTEX}_SHADER,
TESS_{EVALUATION, CONTROL}_SHADER

void ShaderSource(uint shader, sizei count,
const char * const * string, const int
*length);

void CompileShader(uint shader);
void ReleaseShaderCompiler(void);
void DeleteShader(uint shader);

Program Objects [7.3]
uint CreateProgram(void);
void AttachShader(uint program, uint shader);

(Continued on next page) p

www.khronos.org/opengl

SamuelHuang
Highlight

SamuelHuang
Highlight

<« Shaders and Programs (cont.)

void DetachShader(uint program,
uint shader);

void LinkProgram(uint program);
void UseProgram(uint program);

uint CreateShaderProgramv(enum type,
sizei count, const char * const * strings);

void ProgramParameteri(uint program,
enum pname, int value);
pname: PROGRAM_SEPARABLE,
PROGRAM_BINARY_RETRIEVABLE_HINT
value: TRUE, FALSE

void DeleteProgram(uint program);
boolean IsProgram(uint program);

Program Interfaces [7.3.1]
void GetProgramlInterfaceiv(uint program,
enum programinterface, enum pname,
int *params);
programinterface:
ATOMIC_COUNTER_BUFFER, BUFFER_VARIABLE,
UNIFORM[_BLOCK], PROGRAM_{INPUT, OUTPUT},
SHADER_STORAGE_BLOCK,
{GEOMETRY, VERTEX}_SUBROUTINE,
TESS_{CONTROL, EVALUATION}_SUBROUTINE,
{FRAGMENT, COMPUTE}_SUBROUTINE,
TESS_CONTROL_SUBROUTINE_UNIFORM,
TESS_EVALUATION_SUBROUTINE_UNIFORM,
{GEOMETRY, VERTEX}_SUBROUTINE_UNIFORM,
{FRAGMENT, COMPUTE}_SUBROUTINE_UNIFORM,
TRANSFORM_FEEDBACK_{BUFFER, VARYING}
pname: ACTIVE_RESOURCES, MAX_NAME_LENGTH,
MAX_NUM_ACTIVE_VARIABLES,
MAX_NUM_COMPATIBLE_SUBROUTINES

uint GetProgramResourcelndex(
uint program, enum programinterface,
const char *name);

void GetProgramResourceName(
uint program, enum programinterface,
uint index, sizei bufSize, sizei *length,
char *name);

void GetProgramResourceiv(uint program,
enum programinterface, uint index,
sizei propCount, const enum *props,
sizei bufSize, sizei *length, int *params);
*props: [See Table 7.2]

int GetProgramResourceLocation(
uint program, enum programinterface,
const char *name);

int GetProgramResourceLocationindex(
uint program, enum programinterface,
const char *name);

Program Pipeline Objects [7.4]

void GenProgramPipelines(sizei n,
uint *pipelines);

void DeleteProgramPipelines(sizei n,
const uint *pipelines);

boolean IsProgramPipeline(uint pipeline);
void BindProgramPipeline(uint pipeline);

void CreateProgramPipelines(sizei n,
uint *pipelines);

void UseProgramStages(uint pipeline,
bitfield stages, uint program);
stages: ALL_SHADER_BITS or the bitwise OR of
TESS_{CONTROL, EVALUATION}_SHADER_BIT,
{VERTEX, GEOMETRY, FRAGMENT}_SHADER_BIT,
COMPUTE_SHADER_BIT

void ActiveShaderProgram(uint pipeline,
uint program);

Program Binaries [7.5]

void GetProgramBinary(uint program,
sizei bufSize, sizei *length,
enum *binaryFormat, void *binary);

void ProgramBinary(uint program,
enum binaryFormat, const void *binary,
sizei length);

Uniform Variables [7.6]

int GetUniformLocation(uint program,
const char *name);

void GetActiveUniformName(uint program,
uint uniformindex, sizei bufSize,
sizei *length, char *uniformName);

void GetUniformIndices(uint program,
sizei uniformCount,
const char * const *uniformNames,
uint *uniformindices);

void GetActiveUniform(uint program,
uint index, sizei bufSize, sizei *length,
int *size, enum *type, char *name);

*type returns: DOUBLE_{VECn, MATn, MATmxn},
DOUBLE, FLOAT_{VECn, MATn, MATmxn}, FLOAT,
INT, INT_VECh, UNSIGNED_INT[_VECn], BOOL,
BOOL_VECn, or any value in [Table 7.3]

void GetActiveUniformsiv(uint program,
sizei uniformCount,
const uint *uniformindices, enum pname,
int *params);

pname: [Table 7.6]

UNIFORM_{NAME_LENGTH, TYPE, OFFSET},
UNIFORM_{SIZE, BLOCK_INDEX, UNIFORM},
UNIFORM_{ARRAY, MATRIX}_STRIDE,
UNIFORM_IS_ROW_MAJOR,
UNIFORM_ATOMIC_COUNTER_BUFFER_INDEX

uint GetUniformBlockindex(uint program,
const char *uniformBlockName);

void GetActiveUniformBlockName(
uint program, uint uniformBlockindex,
sizei bufSize, sizei length,
char *uniformBlockName);

void GetActiveUniformBlockiv(
uint program, uint uniformBlockindex,
enum pname, int *params);

pname: UNIFORM_BLOCK_{BINDING, DATA_SIZE},

UNIFORM_BLOCK_NAME_LENGTH,
UNIFORM_BLOCK_ACTIVE_UNIFORMS[_INDICES],
UNIFORM_BLOCK_REFERENCED_BY_X_SHADER,
where X may be one of VERTEX, FRAGMENT,
COMPUTE, GEOMETRY, TESS_CONTROL, or
TESS_EVALUATION [Table 7.7]

void GetActiveAtomicCounterBufferiv(
uint program, uint bufferindex,
enum pname, int *params);
pname: See GetActiveUniformBlockiv, however
replace the prefix UNIFORM_BLOCK_ with
ATOMIC_COUNTER_BUFFER_

Load Uniform Vars. in Default Uniform Block

void Uniform{1234Xi f d ui}(int /ocation,
T value);

void Uniform{1234Xi f d ui}v(int location,
sizei count, const T *value);

void UniformMatrix{234}f d}v(
int location, sizei count, boolean transpose,
const float *value);

void
UniformMatrix{2x3,3x2,2x4,4x2,3x4, 4x3}
{fd}v(int location, sizei count,
boolean transpose, const float *value);

OpenGL 4.6 API Reference Guide

void ProgramUniform{1234X{i f d}(
uint program, int location, T value);

void ProgramUniform{1234Ki f d}v(
uint program, int location, sizei count,
const T *value);

void ProgramUniform{1234}uiv(
uint program, int location, sizei count,
const T *value);

void ProgramUniform{1234}ui(
uint program, int location, T value);

void ProgramUniformMatrix{234}f d}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

void ProgramUniformMatrixf{2x3,3x2,2x4,
4x2, 3x4, 4x3Xf d}v(
uint program, int location, sizei count,
boolean transpose, const T *value);

Uniform Buffer Object Bindings

void UniformBlockBinding(uint program,
uint uniformBlockindex,
uint uniformBlockBinding);

Shader Buffer Variables [7.8]

void ShaderStorageBlockBinding(
uint program, uint storageBlockindex,
uint storageBlockBinding);

Subroutine Uniform Variables [7.9]
Parameter shadertype for the functions in this
section may be {COMPUTE, VERTEX}_SHADER,
TESS_{CONTROL, EVALUATION}_SHADER, or
{FRAGMENT, GEOMETRY}_SHADER

int GetSubroutineUniformLocation(
uint program, enum shadertype,
const char *name);

uint GetSubroutinelndex(uint program,
enum shadertype, const char ¥*name);

void GetActiveSubroutineName(
uint program, enum shadertype,
uint index, sizei bufsize, sizei *length,
char *name);

void GetActiveSubroutineUniformName(
uint program, enum shadertype,
uint index, sizei bufsize, sizei *length,
char *name);

void GetActiveSubroutineUniformiv(
uint program, enum shadertype,
uint index, enum pname, int *values);
pname: [NUM_]COMPATIBLE_SUBROUTINES

void UniformSubroutinesuiv(
enum shadertype, sizei count,
const uint *indlices);

Shader Memory Access [7.12.2]
See diagram on page 6 for more information.

void MemoryBarrier(bitfield barriers);

barriers: ALL_BARRIER_BITS or the OR of
X_BARRIER_BIT where X may be: QUERY_BUFFER,
VERTEX_ATTRIB_ARRAY, ELEMENT_ARRAY,
UNIFORM, TEXTURE_FETCH, BUFFER_UPDATE,
SHADER_IMAGE_ACCESS, COMMAND,
PIXEL_BUFFER, TEXTURE_UPDATE, FRAMEBUFFER,
TRANSFORM_FEEDBACK, ATOMIC_COUNTER,
SHADER_STORAGE, CLIENT_MAPPED_BUFFER,

void MemoryBarrierByRegion(bitfield
barriers);
barriers: ALL_BARRIER_BITS or the OR of
X_BARRIER_BIT where X may be:
ATOMIC_COUNTER, FRAMEBUFFER,
SHADER_IMAGE_ACCESS, SHADER_STORAGE,
TEXTURE_FETCH, UNIFORM

Shader and Program Queries [7.13]
void GetShaderiv(uint shader, enum pname,
int *params);
pname: SHADER_TYPE, INFO_LOG_LENGTH,
{DELETE, COMPILE}_STATUS, COMPUTE_SHADER,
SHADER_SOURCE_LENGTH, SPIR_V_BINARY

void GetProgramiv(uint program,

enum pname, int *params);
pname: ACTIVE_ATOMIC_COUNTER_BUFFERS,

ACTIVE_ATTRIBUTES,
ACTIVE_ATTRIBUTE_MAX_LENGTH,
ACTIVE_UNIFORMS, ACTIVE_UNIFORM_BLOCKS,
ACTIVE_UNIFORM_BLOCK_MAX_NAME_LENGTH,
ACTIVE_UNIFORM_MAX_LENGTH,
ATTACHED_SHADERS, VALIDATE_STATUS,
COMPUTE_WORK_GROUP_SIZE, DELETE_STATUS,
GEOMETRY_{INPUT, OUTPUT}_TYPE,
GEOMETRY_SHADER_INVOCATIONS,
GEOMETRY_VERTICES_OUT, INFO_LOG_LENGTH,
LINK_STATUS, PROGRAM_SEPARABLE,
PROGRAM_BINARY_RETRIEVABLE_HINT,
TESS_CONTROL_OUTPUT_VERTICES,
TESS_GEN_{MODE, SPACING},
TESS_GEN_{VERTEX_ORDER, POINT_MODE},
TRANSFORM_FEEDBACK_BUFFER_MODE,
TRANSFORM_FEEDBACK_VARYINGS,
TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH

void GetProgramPipelineiv(uint pipeline,
enum pname, int *params);
pname: ACTIVE_PROGRAM, VALIDATE_STATUS,
{VERTEX, FRAGMENT, GEOMETRY}_SHADER,
TESS_{CONTROL, EVALUATION}_SHADER,
INFO_LOG_LENGTH, COMPUTE_SHADER

void GetAttachedShaders(uint program,
sizei maxCount, sizei *count,
uint *shaders);

void GetShaderInfoLog(uint shader,
sizei bufSize, sizei *length, char *infoLog);

void GetProgramInfoLog(uint program,
sizei bufSize, sizei *length, char *infoLog);

void GetProgramPipelinelnfoLog(
uint pipeline, sizei bufSize,
sizei *length, char *infoLog);

void GetShaderSource(uint shader,
sizei bufSize, sizei *length, char *source);

void GetShaderPrecisionFormat(
enum shadertype, enum precisiontype,
int *range, int *precision);
shadertype: {VERTEX, FRAGMENT}_SHADER
precisiontype: {LOW, MEDIUM, HIGH}_{FLOAT, INT}

void GetUniform{f d i ui}v(uint program,
int location, T *params);

void GetnUniform{f d i ui}v(uint program,
int location, sizei bufSize, T *params);

void GetUniformSubroutineuiv(
enum shadertype, int location,
uint *params);

void GetProgramStageiv(uint program,
enum shadertype, enum pname,
int *values);
pname: ACTIVE_SUBROUTINES,
ACTIVE_SUBROUTINE_X where X may be
UNIFORMS, MAX_LENGTH, UNIFORM_LOCATIONS,
UNIFORM_MAX_LENGTH

Textures and Samplers [s]
void ActiveTexture(enum texture);

texture: TEXTUREi (where i is
[0, max(MAX_TEXTURE_COORDS,
MAX_COMBINED_TEXTURE_IMAGE_UNITS)-1])

Texture Objects [8.1]
void GenTextures(sizei n, uint *textures);

void BindTexture(enum target, uint texture);
target: TEXTURE_{1D, 2D}[_ARRAY],
TEXTURE_{3D, RECTANGLE, BUFFER},
TEXTURE_CUBE_MAP[_ARRAY],
TEXTURE_2D_MULTISAMPLE[_ARRAY]

void BindTextures(uint first, sizei count,
const uint *textures);
target: See BindTexture

©2017 Khronos Group - Rev. 0717

void BindTextureUnit(uint unit, uint texture);

void CreateTextures(enum target, sizein,
uint *textures);
target: See BindTexture

void DeleteTextures(sizei n,
const uint *textures);

boolean IsTexture(uint texture);

Sampler Objects [8.2]
void GenSamplers(sizei count, uint *samplers);

void CreateSamplers(sizei n, uint *samplers);
void BindSampler(uint unit, uint sampler);

void BindSamplers(uint first, sizei count,
const uint *samplers);

void SamplerParameter{i f}(uint sampler,
enum pname, T param);

void SamplerParameter{i f}v(uint sampler,
enum pname, const T *param);

void SamplerParameterI{i ui}v(uint sampler,
enum pname, const T *params);
pname: for all SamplerParameter* functions:
TEXTURE_X where X may be WRAP_{S, T, R},
{MIN, MAG}_FILTER, {MIN, MAX}_LOD,
BORDER_COLOR, LOD_BIAS, MAX_ANISOTROPY
COMPARE_{MODE, FUNC} [Table 23.18]

void DeleteSamplers(sizei count,
const uint *samplers);

boolean IsSampler(uint sampler);

Sampler Queries [8.3]
void GetSamplerParameter{i f}v(
uint sampler, enum pname, T *params);
pname: See SamplerParameter{if}
void GetSamplerParameterl{i ui}v(
uint sampler, enum pname, T *params);
pname: See SamplerParameter{if}

Pixel Storage Modes [8.4.1]
void PixelStore{i f}(enum pname, T param);
pname: [Tables 8.1, 18.1] [UN]PACK_X where X may
be SWAP_BYTES, LSB_FIRST, ROW_LENGTH,
SKIP_{IMAGES, PIXELS, ROWS}, ALIGNMENT,
IMAGE_HEIGHT, COMPRESSED_BLOCK_WIDTH,
COMPRESSED_BLOCK_{HEIGHT, DEPTH, SIZE}

(Continued on next page) p

www.khronos.org/opengl

OpenGL 4.6 API Reference Guide

<« Textures and Samplers (cont.)

Texture Image Spec. [8.5]

void TexlImage3D(enum target, int level,

int internalformat, sizei width, sizei height,
sizei depth, int border, enum format,
enum type, const void *data);

target: [PROXY_JTEXTURE_CUBE_MAP_ARRAY,
[PROXY_JTEXTURE_2D_ARRAY, [PROXY_]TEXTURE_3D

internalformat: STENCIL_INDEX, RED,
DEPTH_{COMPONENT, STENCIL}, RG, RGB, RGBA,
COMPRESSED_{RED, RG, RGB, RGBA, SRGB,
SRGB_ALPHA), a sized internal format from
[Tables 8.12 - 8.13], or a COMPRESSED_ format
from [Table 8.14]

format: DEPTH_{COMPONENT, STENCIL}, RED,
GREEN, BLUE, RG, RGB, RGBA, BGR, BGRA,
{BGRA, RED, GREEN, BLUE}_INTEGER,
{RG, RGB, RGBA, BGR}_INTEGER,
STENCIL_INDEX, [Table 8.3]

type: [UNSIGNED_]{BYTE, SHORT, INT},
[HALF_]FLOAT, or a value from [Table 8.2]

void Texlmage2D(enum target, int level,

int internalformat, sizei width,
sizei height, int border, enum format,
enum type, const void *data);

target: [PROXY_]JTEXTURE_{2D, RECTANGLE},
[PROXY_JTEXTURE_{1D_ARRAY, CUBE_MAP},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z,
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, 2}

internalformat, format, type: See Teximage3D

void TexlmagelD(enum target, int level,
int internalformat, sizei width, int border,
enum format, enum type, const void *data);
target: TEXTURE_1D, PROXY_TEXTURE_1D
type, internalformat, format: See TexImage3D

Alternate Texture Image Spec. [8.6]
void CopyTexImage2D(enum target,
int level, enum internalformat, int x,
int y, sizei width, sizei height, int border);
target: TEXTURE_{2D, RECTANGLE, 1D_ARRAY},
TEXTURE_CUBE_MAP_{POSITIVE, NEGATIVE}_{X, Y, Z}
internalformat: See Teximage3D

void CopyTeximagelD(enum target,
int level, enum internalformat, int x,
int y, sizei width, int border);
target: TEXTURE_1D
internalformat: See Teximage3D

void TexSublmage3D(enum target, int level,

int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type,
const void *data);

target: TEXTURE_3D, TEXTURE_2D_ARRAY,
TEXTURE_CUBE_MAP_ARRAY

format, type: See Teximage3D

void TexSublmage2D(enum target,
int level, int xoffset, int yoffset, sizei width,
sizei height, enum format, enum type,
const void *data);
target: See CopyTeximage2D
format, type: See Teximage3D

void TexSublmagel1D(enum target, int level,
int xoffset, sizei width, enum format,
enum type, const void *data);
target, format, type: See CopyTeximagelD

void CopyTexSubimage3D(enum target,
int level, int xoffset, int yoffset, int zoffset,
int x, int y, sizei width, sizei height);
target: See TexSublmage3D

void CopyTexSublmage2D(enum target,
int level, int xoffset, int yoffset, int x,
int y, sizei width, sizei height);
target: See Teximage2D

void CopyTexSublmagelD(enum target,
int level, int xoffset, int x, int y, sizei width);
target: See TexSublmagelD

void TextureSublmage3D(uint texture, int level,
int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type,
const void *pixels);
format, type: See Teximage3D

void TextureSublmage2D(uint texture, int level,
int xoffset, int yoffset, sizei width,
sizei height, enum format, enum type,
const void *pixels);
format, type: See Teximage3D

©2017 Khronos Group - Rev. 0717

void TextureSublmagelD(uint texture, int level,
int xoffset, sizei width, enum format,
enum type, const void *pixels);
format, type: See Teximage3D

void CopyTextureSublmage3D(uint texture,
int level, int xoffset, int yoffset, int zoffset,
int x, int y, sizei width, sizei height);

void CopyTextureSublmage2D(uint texture,
int level, int xoffset, int yoffset, int x,
int y, sizei width, sizei height);

void CopyTextureSublmagel1D(uint texture,
int level, int xoffset, int x, int y, sizei width);

Compressed Texture Images [8.7]
void CompressedTexImage3D(enum target,
int level, enum internalformat, sizei width,
sizei height, sizei depth, int border,
sizei imageSize, const void *data);
target: See Teximage3D
internalformat: A COMPRESSED_
format from [Table 8.14]

void CompressedTexlmage2D(enum target,
int level, enum internalformat,
sizei width, sizei height, int border,
sizei imageSize, const void *data);
target: See Teximage2D
internalformat: May be one of the COMPRESSED_
formats from [Table 8.14]

void CompressedTexImagelD(enum target,
int level, enum internalformat,
sizei width, int border, sizei imageSize,
const void *data);
target: TEXTURE_1D, PROXY_TEXTURE_1D
internalformat: See Teximage1D, omitting
compressed rectangular texture formats

void CompressedTexSublmage3D(

enum target, int level, int xoffset,
int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);

target: See TexSublmage3D

format: See internalformat for
CompressedTeximage3D

void CompressedTexSublmage2D(
enum target, int level, int xoffset,
int yoffset, sizei width, sizei height,
enum format, sizei imageSize,
cont void *data);

target: See TexSublmage2D

format: See internalformat for

CompressedTeximage2D

void CompressedTexSublmage1D(
enum target, int level, int xoffset,
sizei width, enum format, sizei imageSize,
const void *data);
target: See TexSublmage1D
format: See internalformat for
CompressedTexImage1D

void CompressedTextureSubimage3D(
uint texture, int level, int xoffset,
int yoffset, int zoffset, sizei width,
sizei height, sizei depth, enum format,
sizei imageSize, const void *data);
format: See internalformat for
CompressedTeximage3D

void CompressedTextureSubimage2D(
uint texture, int level, int xoffset,
int yoffset, sizei width, sizei height,
enum format, sizei imageSize,
cont void *data);
format: See internalformat for
CompressedTeximage2D

void CompressedTextureSubimage1D(
uint texture, int level, int xoffset,
sizei width, enum format, sizei imageSize,
const void *data);
format: See internalformat for
CompressedTeximagelD

Multisample Textures [8.8]
void Texlmage3DMultisample(enum target,
sizei samples, int internalformat,
sizei width, sizei height, sizei depth,
boolean fixedsamplelocations);
target: [PROXY_]TEXTURE_2D_MULTISAMPLE_ARRAY
internalformat: RED, RG, RGB, RGBA, RGBA{32, 32Ul},
DEPTH_COMPONENT([16, 24, 32, 32F],
DEPTH{24, 32F}_STENCILS, STENCIL_INDEX{1, 4, 8, 16}

void TexlImage2DMultisample(enum target,
sizei samples, int internalformat, sizei width,
sizei height, boolean fixedsamplelocations);
target: [PROXY_]TEXTURE_2D_MULTISAMPLE
internalformat: See Teximage3DMultisample

Buffer Textures [8.9]

void TexBufferRange(enum target,
enum internalFormat, uint buffer,
intptr offset, sizeiptr size);

void TextureBufferRange(uint texture,
enum internalFormat, uint buffer,
intptr offset, sizeiptr size);
internalformat: See TexBuffer

void TexBuffer(enum target,

enum internalformat, uint buffer);

target: TEXTURE_BUFFER

internalformat: [Table 8.16] R8, R8{l, Ul}, R16,
R16{F, I, UI}, R32{F, 1, U}, RGS, RG8{, Ul}, RG16,
RG16{F, I, UI}, RG32{F, I, Ul}, RGB32F, RGB32{l, Ul},
RGBAS, RGBAS(l, Ul}, RGBA16, RGBA16{F, I, Ul},
RGBA32{F, I, Ul}

void TextureBuffer(uint texture,
enum internalformat, uint buffer);
internalformat: See TexBuffer

Texture Parameters [8.10]
void TexParameter{i f}(enum target,
enum pname, T param);
target: See BindTexture

void TexParameter{i f}v(enum target,
enum pname, const T *params);
target: See BindTexture

void TexParameterl{i ui}v(enum target,

enum pname, const T *params);

target: See BindTexture

pname for all TexParameter* functions:
DEPTH_STENCIL_TEXTURE_MODE or
TEXTURE_X where X may be one of
WRAP_{S, T, R}, BORDER_COLOR,
{MIN, MAG}_FILTER, LOD_BIAS,{MIN, MAX}_LOD,
{BASE, MAX}_LEVEL, SWIZZLE_{R, G, B, A, RGBA},
COMPARE_{MODE, FUNC} [Table 8.17]

void TextureParameter{i f}(uint texture,
enum pname, T param);
pname: See BindTexture

void TextureParameterf{i fiv(uint texture,
enum pname, const T *params);
pname: See BindTexture

void TextureParameterI{i ui}v(uint texture,
enum pname, const T *params);
pname for all TextureParameter* functions:
TEXTURE_{3D, RECTANGLE, MAX_ANISOTROPY},
TEXTURE_{1D, 2D, CUBE_MAP}[_ARRAY],
TEXTURE_2D_MULTISAMPLE[_ARRAY]

Texture Queries [8.11]
void GetTexParameter{ifjv(enum target,
enum pname, T * params);
target: See BindTexture
pname: See GetTexParameterI{i uijv

void GetTexParameterI{i ui}v(enum target,

enum pname, T * params);

target: See BindTexture

pname: IMAGE_FORMAT_COMPATIBILITY_TYPE,
TEXTURE_IMMUTABLE_{FORMAT, LEVELS},
TEXTURE_VIEW_MIN_{LEVEL, LAYER},
TEXTURE_VIEW_NUM_{LEVELS, LAYERS},
DEPTH_STENCIL_TEXTURE_MODE, or TEXTURE_X
where X may be one of WRAP_{S, T, R},
BORDER_COLOR, TARGET, {MIN, MAG}_FILTER,
LOD_BIAS,{MIN, MAX}_LOD, {BASE, MAX}_LEVEL,
SWIZZLE_{R, G, B, A, RGBA},
COMPARE_{MODE, FUNC} [Table 8.17]

void GetTextureParameter{if}v(uint texture,
enum pname, T *data);
pname: See GetTexParameterI{i uijv

void GetTextureParameterlI{i ui}v(uint texture,
enum pname, T *data);

pname: See GetTexParameterI{i uijv

void GetTexLevelParameter{i fjv(enum target,

int level, enum pname, T *params);

target: [PROXY_]JTEXTURE_{1D, 2D, 3D},
TEXTURE_BUFFER, PROXY_TEXTURE_CUBE_MAP,
[PROXY_]TEXTURE_{1D, 2D,CUBE_MAP}_ARRAY,
[PROXY_]TEXTURE_RECTANGLE,
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
[PROXY_]TEXTURE_2D_MULTISAMPLE[_ARRAY]

pname: TEXTURE _*, where * may be WIDTH,
HEIGHT, DEPTH, FIXED_SAMPLE_LOCATIONS,
INTERNAL_FORMAT, SHARED_SIZE, COMPRESSED,
COMPRESSED_IMAGE_SIZE, SAMPLES,
BUFFER_{OFFSET, SIZE}, or X_{SIZE, TYPE}
where X can be RED, GREEN, BLUE, ALPHA, DEPTH

void GetTextureLevelParameter{i f}v(
uint texture, int level, enum pname,
T *params);
pname: See GetTexLevelParameter{i fiv

void GetTexImage(enum target, int level,

enum format, enum type, void *pixels);

target: TEXTURE_{1, 2)D[_ARRAY],
TEXTURE_{3D, RECTANGLE, CUBE_MAP_ARRAY},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z}

format: See Teximage3D

type: [UNSIGNED_]BYTE, SHORT, INT,
[HALF_]FLOAT, or a value from [Table 8.2]

void GetTexturelmage(uint texture, int level,
enum format, enum type, sizei bufSize,
void *pixels);
level: LOD level
format, type: See GetTexImage

void GetnTexImage(enum tex, int level,

enum format, enum type, sizei bufSize,
void *pixels);

tex: TEXTURE_{1D, 2D, 3D}[_ARRAY], TEXTURE_3D,
TEXTURE_{CUBE_MAP_ARRAY, RECTANGLE},
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, 2}

level, format, type: See GetTexturelmage

void GetTextureSublmage(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type, sizei bufSize,
void *pixels);
level, format, type: See GetTexturelmage

void GetCompressedTexlmage(enum target,
int level, void *pixels);
target: See GetTexturelmage

void
GetCompressedTexturelmage(uint texture,
int level, sizei bufSize, void *pixels);
level: See GetTexturelmage

void GetnCompressedTexImage(enum target,
int level, sizei bufsize, void *pixels);
target: See GetCompressedTeximage
level: LOD level

void GetCompressedTextureSublmage(
uint texture, int level, int xoffset, int yoffset,
int zoffset, sizei width, sizei height,
sizei depth, sizei bufSize, void *pixels);
level: LOD level

Cube Map Texture Select [8.13.1]

Enable/Disable/IsEnabled(
TEXTURE_CUBE_MAP_SEAMLESS);

Manual Mipmap Generation [8.14.4]
void GenerateMipmap(enum target);
target: TEXTURE_{1D, 2D, 3D},
TEXTURE_{1D, 2D}_ARRAY,
TEXTURE_CUBE_MAP[_ARRAY]

void GenerateTextureMipmap(uint texture);

Texture Views [8.18]
void TextureView(uint texture, enum target,

uint origtexture, enum internalformat,
uint minlevel, uint numlevels, uint minlayer,
uint numlayers);

target: TEXTURE_{1D, 2D,CUBE_MAP}{_ARRAY],
TEXTURE_3D, TEXTURE_RECTANGLE,
TEXTURE_2D_MULTISAMPLE[_ARRAY]

internalformat:
R8, R8{UI, I}, R8_SNORM, R11F_G11F_B10F,
R16{F, UI, I}, R16[_SNORM],
R32{F, U, 1}, SRGBS[UL, I],
RG8{F, UL, I}, RG8[_SNORM],
RG16{F, Ul, I}, RG16[_SNORM], RG32{F, UL, I},
RGB8[_SNORM], RGB9_E5, RGB10_A2[Ul],
RGBAS{UI, I}, RGBAS[_SNORM],
RGB16{F, UL, I}, RGB16[_SNORM], RGB32{F, U, 1},
RGBA16{F, Ul, I}, RGBA16[_SNORM],
RGBA32{F, Ul, I}, SRGB8_ALPHAS;
COMPRESSED_X where X may be
[SIGNED]_RED_RGTC1, [SIGNED]_RG_RGTC2,
{RGBA, SRGB_ALPHA}_BPTC_UNORM,
RGB_BPTC_[UN]SIGNED_FLOAT

Immutable-Format Tex. Images [8.19]
void TexStoragelD(enum target, sizei levels,
enum internalformat, sizei width);
target: TEXTURE_1D
internalformat: any of the sized internal color, depth,
and stencil formats in [Tables 8.18-20]

(Continued on next page) p

www.khronos.org/opengl

<« Textures and Samplers (cont.)
void TexStorage2D(enum target, sizei levels,
enum internalformat, sizei width,
sizei height);
target: TEXTURE_{RECTANGLE, CUBE_MAP},
TEXTURE_{1D_ARRAY, 2D}
internalformat: See TexStorage1D

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width,
sizei height, sizei depth);
target: TEXTURE_3D,
TEXTURE, {CUBE MAP, 2D}[_ARRAY]
internalformat: See TexStorage1D

void TextureStorage1D(uint texture, sizei levels,
enum internalformat, sizei w:dth)
internalformat: See TexStorage1D

void TextureStorage2D(uint texture,
sizei levels, enum internalformat,
sizei width, sizei height);
internalformat: See TexStorage1D

void TextureStorage3D(uint texture,
sizei levels, enum internalformat,
sizei width, sizei height, sizei depth);
internalformat: See TexStorage1D

void TexStorage2DMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height, boolean fixedsamplelocations);
target: TEXTURE_2D_MULTISAMPLE

void TexStorage3DMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height, sizei depth,
boolean fixedsamplelocations);
target: TEXTURE_2D_MULTISAMPLE_ARRAY

void TextureStorage2DMultisample(
uint texture, sizei samples,
enum internalformat, sizei width,
sizei height, boolean fixedsamplelocations);

OpenGL 4.6 API Reference Guide

void TextureStorage3DMultisample(
uint texture, sizei samples,
enum internalformat, sizei width,
sizei height, sizei depth,
boolean fixedsamplelocations);

Invalidate Texture Image Data [8.20]

void InvalidateTexSublmage(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth);

void InvalidateTexImage(uint texture, int level);

Clear Texture Image Data [8.21]

void ClearTexSublmage(uint texture,
int level, int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,

void ClearTexlmage(uint texture,

int level, enum format, enum type,
const void *data);

format, type: See Teximage3D, pg 2 this card

Texture Image Loads/Stores [8.26]
void BindlmageTexture(uint index,

uint texture, int level, boolean layered,
int layer, enum access, enum format);

access: READ_ONLY, WRITE_ONLY, READ_WRITE
format: RGBA{32,16}F, RG{32,16}F, R11F_G11F_B10F,

R{32,16}F, RGBA{32,16,8}UI, RGB10_A2UI,
RG{32,16,8}UI, R{32,16,8}]Ul, RGBA{32,16,3}I,
RG{32,16,8}l, R{32,16,8}l, RGBA{16,8}, RGB10_A2,
RG{16,8}, R{16,8}, RGBA{16,8}_SNORM,
RG{16,8} SNORM, R{16,8} SNORM [Table 8.26]

enum format enum type, const void *data); ;g BindimageTextures(uint first,

format, type: See Teximage3D, pg 2 this card

sizei count, const uint *textures);

Framebuffer Objects

Binding and Managing [9.2]
void BindFramebuffer(enum target,
uint framebuffer);
target: [DRAW_, READ_]FRAMEBUFFER

void CreateFramebuffers(sizei n,
uint *framebuffers);

void GenFramebuffers(sizei n,
uint *framebuffers);

void DeleteFramebuffers(sizei n,
const uint *framebuffers);

boolean IsFramebuffer(uint framebuffer);

Framebuffer Object Parameters [9.2.1]
void FramebufferParameteri(
enum target, enum pname, int param);
target: [DRAW_, READ_]FRAMEBUFFER
pname: FRAMEBUFFER_DEFAULT_X where X may
be WIDTH, HEIGHT, FIXED_SAMPLE_LOCATIONS,
SAMPLES, LAYERS

void NamedFramebufferParameteri(
uint framebuffer, enum pname, int param);
pname: See FramebufferParameteri

Framebuffer Object Queries [9.2.3]
void GetFramebufferParameteriv(
enum target, enum pname, int *params);
target: See FramebufferParameteri
pname: See FramebufferParameteri plus
DOUBLEBUFFER, SAMPLES, SAMPLE_BUFFERS,
IMPLEMENTATION_COLOR_READ_FORMAT,
IMPLEMENTATION_COLOR_READ_TYPE, STEREO

void GetNamedFramebufferParameteriv(
uint framebuffer, enum pname, int
*params);
pname: See GetFramebufferParameteri

void GetFramebufferAttachmentParameteriv(
enum target, enum attachment,
enum pname, int *params);
target: [DRAW_, READ_]FRAMEBUFFER

attachment: DEPTH, FRONT_{LEFT, RIGHT}, STENCIL,
BACK_{LEFT, RIGHT}, COLOR_ATTACHMENT;,
{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT

pname: FRAMEBUFFER_ATTACHMENT_X where X
may be OBJECT_{TYPE, NAME}, COMPONENT_TYPE,
{RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE,
COLOR_ENCODING, TEXTURE_{LAYER, LEVEL},
LAYERED, TEXTURE_CUBE_MAP_FACE

void GetNamedFramebufferAttachment-
Parameteriv(uint framebuffer,
enum attachment, enum pname,
int *params);
attachment, pname: See GetFramebufferParameteriv

Renderbuffer Objects [9.2.4]
void BindRenderbuffer(enum target,
uint renderbuffer);
target: RENDERBUFFER

void {Create, Gen}Renderbuffers(sizei n,
uint *renderbuffers);

void DeleteRenderbuffers(sizei n,
const uint *renderbuffers);

boolean IsRenderbuffer(uint renderbuffer);

void RenderbufferStorageMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height);
target: RENDERBUFFER
internalformat: See Teximage3DMultisample

void
NamedRenderbufferStorageMultisample(
uint renderbuffer, sizei samples,
enum internalformat, sizei width,
sizei height);
internalformat: See Teximage3DMultisample

void RenderbufferStorage(enum target,
enum internalformat, sizei width,
sizei height);
target: RENDERBUFFER
internalformat: See TexiImage3DMultisample

void NamedRenderbufferStorage(
uint renderbuffer, enum internalformat,
sizei width, sizei height);
internalformat: See Teximage3DMultisample

Renderbuffer Object Queries [9.2.6]

void GetRenderbufferParameteriv(
enum target, enum pname, int *params);
target: RENDERBUFFER
pname: [Table 23.27]
RENDERBUFFER_X where X may be WIDTH,
HEIGHT, INTERNAL_FORMAT, SAMPLES,

{RED, GREEN, BLUE, ALPHA, DEPTH, STENCIL}_SIZE

void GetNamedRenderbufferParameteriv(
uint renderbuffer, enum pname,
int *params);
pname: See GetRenderbufferParameteriv

Attaching Renderbuffer Images [9.2.7]
void FramebufferRenderbuffer(
enum target, enum attachment,
enum renderbuffertarget,
uint renderbuffer);
target: [DRAW_, READ_]FRAMEBUFFER
attachment: [Table 9.1]

{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT,

COLOR_ATTACHMENT; where i is
[0, MAX_COLOR_ATTACHMENTS - 1]

renderbuffertarget: RENDERBUFFER if renderbuffer is

non-zero, else undefined

void NamedFramebufferRenderbuffer(
uint framebuffer, enum attachment,
enum renderbuffertarget,
uint renderbuffer);
attachment, renderbuffertarget: See
FramebufferRenderbuffer

Attaching Texture Images [9.2.8]
void FramebufferTexture(enum target,
enum attachment, uint texture, int level);
target: [DRAW_, READ_]FRAMEBUFFER
attachment: See FramebufferRenderbuffer

void NamedFramebufferTexture(

uint framebuffer, enum attachment,
uint texture, int level);

attachment: See FramebufferRenderbuffer

void FramebufferTexture1D(enum target,

enum attachment, enum textarget,
uint texture, int level);

textarget: TEXTURE_1D
target, attachment: See FramebufferRenderbuffer

void FramebufferTexture2D(enum target,

enum attachment, enum textarget,
uint texture, int level);

textarget: TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},

TEXTURE_CUBE_| MAP NEGATIVE X, v,2},
TEXTURE_{ZD RECTANGLE 2D_MULTISAMPLE}
(unspecified if texture is 0)

target, attachment: See FramebufferRenderbuffer
void FramebufferTexture3D(enum target,

enum attachment, enum textarget,
uint texture, int level, int layer);

textarget: TEXTURE_3D (unspecified if texture is 0)
target, attachment: See FramebufferRenderbuffer

void FramebufferTextureLayer(enum target,

enum attachment, uint texture,
int level, int layer);

target, attachment: See FramebufferRenderbuffer

void NamedFramebufferTextureLayer(

uint framebuffer, enum attachment,
uint texture, int level, int layer);

attachment: See FramebufferRenderbuffer

Feedback Loops [9.3.1]
void TextureBarrier(void);

Framebuffer Completeness [9.4.2]

enum CheckFramebufferStatus(enum target);
target: [DRAW_, READ_]JFRAMEBUFFER
returns: FRAMEBUFFER_COMPLETE or a constant

indicating the violating value

enum CheckNamedFramebufferStatus(

uint framebuffer, enum target);

target: See CheckFramebufferStatus

Vertices

Separate Patches [10.1.15]

void PatchParameteri(enum pname, int value);
pname: PATCH_VERTICES

Current Vertex Attribute Values [10.2]
Use the commands VertexAttrib*for attributes
of type float, VertexAttribI* for int or uint, or
VertexAttribL* for double.

Vertex Arrays

Vertex Array Objects [10.3.1]
All states related to definition of data used by
vertex processor is in a vertex array object.

void GenVertexArrays(sizei n, uint *arrays);

void DeleteVertexArrays(sizei n,
const uint *arrays);

void BindVertexArray(uint array);
void CreateVertexArrays(sizei n, uint *arrays);
boolean IsVertexArray(uint array);

void VertexArrayElementBuffer(uint vaoby,
uint buffer);

©2017 Khronos Group - Rev. 0717

void VertexAttrib{1234}s f d}(uint index,
T values);

void VertexAttrib{123}s f d}v(uint index,
const T *values);

void VertexAttribd{b s i f d ub us ui}v(
uint index, const T *values);

void VertexAttrib4Nub(uint index, ubyte x,
ubyte y, ubyte z, ubyte w);

void VertexAttrib4N{b s i ub us ui}v(
uint index, const T *values);

Generic Vertex Attribute Arrays [10.3.2]

void VertexAttribFormat(uint attribindex,
int size, enum type, boolean normalized,
unit relativeoffset);

type: [UNSIGNED_]BYTE, [UNSIGNED_]SHORT,

[UNSIGNED_]INT, [HALF_]FLOAT, DOUBLE, FIXED,
[UNSIGNED_]INT_2_10_10_10_REV,
UNSIGNED_INT_10F 11F 11F REV

void VertexAttribIFormat(uint attribindex,
int size, enum type, unit relativeoffset);
type: [UNSIGNED_]BYTE, [UNSIGNED_]SHORT,
[UNSIGNED_]INT

void VertexAttribLFormat(uint attribindex,
int size, enum type, unit relanveojj‘set),
type: DOUBLE

void VertexAttribI{1234}i ui}(uint index,
T values);

void VertexAttribI{1234}i ui}v(uint index,
const T *values);

void VertexAttribl4{b s ub us}v(uint index,
const T *values);

void VertexAttribL{1234}d(uint index,
const T values);

void VertexAttribL{1234}dv(uint index,

void VertexArrayAttribFormat(uint vaobj,
uint attribindex, int size, enum type,
boolean normalized, uint relativeoffset);
type: See VertexAttribFormat

void VertexArrayAttribIFormat(uint vaobj,
uint attribindex, int size, enum type,
uint relativeoffset);
type: See VertexAttribIFormat

void VertexArrayAttribLFormat(uint vaobj,
uint attribindex, int size, enum type,
uint relativeoffset);
type: See VertexAttribLFormat

void BindVertexBuffer(uint bindingindex,
uint buffer, intptr offset, sizei stride);

const T *values);

void VertexAttribP{1234}ui(uint index,

enum type, boolean normalized, uint value);

void VertexAttribP{1234}uiv(uint index,

enum type, boolean normalized,
const uint *value);

type: [UNSIGNED_]INT_2_10_10_10_REV, or

UNSIGNED_INT_10F_11F_11F_REV (except for
VertexAttribP4uiv)

void VertexArrayVertexBuffer(uint vaoby,

uint bindingindex, uint buffer, intptr offset,
sizei stride);

void BindVertexBuffers(uint first,

sizei count, const uint *buffers,
const intptr *offsets, const sizei *strides);

void VertexArrayVertexBuffers(uint vaobj,

uint first, sizei count, const uint *buffers,
const intptr *offsets, const sizei *strides);

void VertexAttribBinding(uint attribindex,

uint bindingindex);

(Continued on next page) p>

www.khronos.org/opengl

OpenGL 4.6 API Reference Guide

<«\Vertex Arrays (cont.)

void VertexArrayAttribBinding(uint vaobj,
uint attribindex, uint bindingindex);

void VertexAttribPointer(uint index, int size,
enum type, boolean normalized,
sizei stride, const void *pointer);
type: See VertexAttribFormat
void VertexAttriblPointer(uint index,
int size, enum type, sizei stride,
const void *pointer);
type: See VertexAttribIFormat
index: [0, MAX_VERTEX_ATTRIBS - 1]
void VertexAttribLPointer(uint index, int size,
enum type, sizei stride, const void*pointer);
type: DOUBLE

void EnableVertexAttribArray(uint index);

void EnableVertexArrayAttrib(uint vaobj,
uint index);

void DisableVertexAttribArray(uint index);

void DisableVertexArrayAttrib(uint vaobj,
uint index);

Vertex Attribute Divisors [10.3.4]

void VertexBindingDivisor(uint bindingindex,
uint divisor);

void VertexArrayBindingDivisor(uint vaobj,
uint bindingindex, uint divisor);

void VertexAttribDivisor(uint index,
uint divisor);

Primitive Restart [10.3.6]

Enable/Disable/IsEnabled(target);
target: PRIMITIVE_RESTART[_FIXED_INDEX]

void PrimitiveRestartIndex(uint index);

Drawing Commands [10.4]
For all the functions in this section:
mode: POINTS, PATCHES, LINE_STRIP,
LINE_LOOP, TRIANGLE_STRIP, TRIANGLE_FAN,
LINES, LINES_ADJACENCY, TRIANGLES,
TRIANGLES_ADJACENCY, LINE_STRIP_ADJACENCY,
TRIANGLE_STRIP_ADJACENCY
type: UNSIGNED_{BYTE, SHORT, INT}

void DrawArrays(enum mode, int first,
sizei count);

void DrawArraysinstancedBaselnstance(
enum mode, int first, sizei count,
sizei instancecount, uint baseinstance);

void DrawArrayslnstanced(enum mode,
int first, sizei count, sizei instancecount);

void DrawArraysindirect(enum mode,
const void *indirect);

void MultiDrawArrays(enum mode,
const int *first, const sizei *count,
sizei drawcount);

void MultiDrawArraysindirect(enum mode,
const void *indirect, sizei drawcount,
sizei stride);

void MultiDrawArraysindirectCount(
enum mode, const void *indirect,
intptr drawcount, intptr maxdrawcount,
sizei stride);

void DrawElements(enum mode, sizei count,
enum type, const void *indices);

void DrawElementsinstancedBaselnstance(
enum mode, sizei count, enum type,
const void *indices, sizei instancecount,
uint baseinstance);

void DrawElementsinstanced(enum mode,
sizei count, enum type, const void *indices,
sizei instancecount);

void MultiDrawElements(enum mode,
const sizei *count, enum type,
const void * const *indices,
sizei drawcount);

void DrawRangeElements(enum mode,
uint start, uint end, sizei count,
enum type, const void *indices);

void DrawElementsBaseVertex(enum mode,
sizei count, enum type, const void *indices,
int basevertex);

void DrawRangeElementsBaseVertex(
enum mode, uint start, uint end,
sizei count, enum type, const void *indices,
int basevertex);

void DrawElementsinstancedBaseVertex(
enum mode, sizei count, enum type,
const void *indlices, sizei instancecount,
int basevertex);

void DrawElementsinstancedBase-
VertexBaselnstance(enum mode,
sizei count, enum type,
const void *indices, sizei instancecount,
int basevertex, uint baseinstance);

void DrawElementsindirect(enum mode,
enum type, const void *indirect);

void MultiDrawElementsIndirect(
enum mode, enum type,
const void *indirect, sizei drawcount,
sizei stride);

void MultiDrawElementsindirectCount(

enum mode, enum type, const void *indirect,

intptr drawcount, sizei maxdrawcount,
sizei stride);

void MultiDrawElementsBaseVertex(
enum mode, const sizei *count,
enum type, const void *const *indices,
sizei drawcount, const int *basevertex);

Vertex Array Queries [10.5]
void GetVertexArrayiv(uint vaobyj,
enum pname, int *param);
pname: ELEMENT_ARRAY_BUFFER_BINDING

void GetVertexArraylndexdiv(uint vaoby,
uint index, enum pname, int *param);
pname: VERTEX_ATTRIB_RELATIVE_OFFSET or
VERTEX_ATTRIB_ARRAY_X where X is one of
ENABLED, SIZE, STRIDE, TYPE, NORMALIZED,
INTEGER, LONG, DIVISOR

void GetVertexArraylndexd64iv(uint vaobj,
uint index, enum pname, int64 *param);
pname: VERTEX_BINDING_OFFSET

void GetVertexAttrib{d f i}v(uint index,
enum pname, T *params);
pname: See GetVertexArrayindexediv plus
VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
VERTEX_ATTRIB_BINDING,
CURRENT_VERTEX_ATTRIB

void GetVertexAttribl{i ui}v(uint index,
enum pname, T *params);
pname: See GetVertexAttrib{d f i}v

void GetVertexAttribLdv(uint index,
enum pname, double *params);
pname: See GetVertexAttrib{d f i}v

void GetVertexAttribPointerv(uint index,
enum pname, const void **pointer);
pname: VERTEX_ATTRIB_ARRAY_POINTER

Conditional Rendering [10.9]
void BeginConditionalRender(uint id,
enum mode);
mode: QUERY _[NO_]WAIT[_INVERTED],
QUERY_BY_REGION_[NO_]WAIT[_INVERTED]

void EndConditionalRender(void);

Vertex Attributes [11.1.1]

Vertex shaders operate on array of
4-component items numbered from slot 0 to
MAX_VERTEX_ATTRIBS - 1.

void BindAttribLocation(uint program,
uint index, const char ¥*name);

void GetActiveAttrib(uint program,
uint index, sizei bufSize, sizei *length,
int *size, enum *type, char *name);

int GetAttribLocation(uint program,
const char *name);

Transform Feedback Variables [11.1.2]
void TransformFeedbackVaryings(
uint program, sizei count,
const char * const *varyings,
enum bufferMode);
bufferMode:
INTERLEAVED_ATTRIBS, SEPARATE_ATTRIBS

void GetTransformFeedbackVarying(
uint program, uint index, sizei bufSize,
sizei *length, sizei *size, enum *type,
char *name);

*type returns NONE, FLOAT , FLOAT_VECn,
DOUBLE , DOUBLE_VECn, INT, UNSIGNED_INT,
INT_VECn, UNSIGNED_INT_VECn,

MATnxm, FLOAT_MATnxm, DOUBLE_MATnxm,
FLOAT_MATn, DOUBLE_MATn

Shader Execution [11.1.3]
void ValidateProgram(uint program);

void ValidateProgramPipeline(uint pipeline);

Tessellation Prim. Generation [11.2.2]
void PatchParameterfv(enum pname,
const float *values);
pname: PATCH_DEFAULT_INNER_LEVEL,
PATCH_DEFAULT_OUTER_LEVEL

Vertex Post-Processing [13]
Transform Feedback [13.2]
void GenTransformFeedbacks(sizei n,
uint *ids);
void DeleteTransformFeedbacks(sizei n,
const uint *ids);
boolean IsTransformFeedback(uint id);
void BindTransformFeedback(
enum target, uint id);
target: TRANSFORM_FEEDBACK
void CreateTransformFeedbacks(
sizei n, uint *ids);
void BeginTransformFeedback(
enum primitiveMode);
primitiveMode: TRIANGLES, LINES, POINTS

void EndTransformFeedback(void);
void PauseTransformFeedback(void);
void ResumeTransformFeedback(void);

void TransformFeedbackBufferRange(
uint xfb, uint index, uint buffer, intptr offset,
sizeiptr size);

void TransformFeedbackBufferBase(
uint xfb, uint index, uint buffer);

Transform Feedback Drawing [13.2.3]

void DrawTransformFeedback(
enum mode, uint id);
mode: See Drawing Commands [10.4] above

void DrawTransformFeedbackinstanced(
enum mode, uint id, sizei instancecount);

void DrawTransformFeedbackStream(
enum mode, uint id, uint stream);
void
DrawTransformFeedbackStreaminstanced(
enum mode, uint id, uint stream,
sizei instancecount);

Flatshading [13.4]
void ProvokingVertex(enum provokeMode);
provokeMode: {FIRST, LAST}_VERTEX_CONVENTION

Primitive Clipping [13.5]
Enable/Disable/IsEnabled(target);
target: DEPTH_CLAMP, CLIP_DISTANCE/ where
i= [0..MAX_CLIP_DISTANCES - 1]

void ClipControl(enum origin, enum depth);
origin: LOWER_LEFT or UPPER_LEFT
depth: NEGATIVE_ONE_TO_ONE or ZERO_TO_ONE

Controlling Viewport [13.6.1]

void DepthRangeArrayv(uint first,
sizei count, const double *v);

void DepthRangelndexed(uint index,
double n, double f);

void DepthRange(double n, double f);
void DepthRangef(float n, float f);

void ViewportArrayv(uint first, sizei count,
const float *v);

void Viewportindexedf(uint index, float x,
float y, float w, float h);

void Viewportindexedfv(uint index,
const float *v);

void Viewport(int x, int y, sizei w, sizei h);

Rasterization [13.4, 14]

Enable/Disable/IsEnabled(target);
target: RASTERIZER_DISCARD

Multisampling [14.3.1]
Use to antialias points, and lines.
Enable/Disable/IsEnabled(target);
target: MULTISAMPLE, SAMPLE_SHADING
void GetMultisamplefv(enum pname,
uint index, float *val);
pname: SAMPLE_POSITION

void MinSampleShading(float value);

Points [14.4]
void PointSize(float size);

void PointParameter{i f}(enum pname,
T param);
pname, param: See PointParameter{if}v

©2017 Khronos Group - Rev. 0717

void PointParameter{i fjv(enum pname,

const T *params);

pname: POINT_FADE_THRESHOLD_SIZE,
POINT_SPRITE_COORD_ORIGIN

params: The fade threshold if pname is
POINT_FADE_THRESHOLD_SIZE;
{LOWER, UPPER}_LEFT if pname is
POINT_SPRITE_COORD_ORIGIN

Enable/Disable/IsEnabled(target);
target: PROGRAM_POINT SIZE

void FrontFace(enum dir);
dir: CCW, CW

void CullFace(enum mode);
mode: FRONT, BACK, FRONT_AND_BACK

Polygon Rast. & Depth Offset [14.6.4-5]

void PolygonMode(enum face, enum mode);
face: FRONT_AND_BACK
mode: POINT, LINE, FILL

void PolygonOffsetClamp(float factor,

Line Segments [14.5]
Enable/Disable/IsEnabled(target);
target: LINE_SMOOTH

void LineWidth(float width);

float units, float clamp);

void PolygonOffset(float factor, float units);
Enable/Disable/IsEnabled(target);

target: POLYGON_OFFSET_{POINT, LINE, FILL}

Polygons [14.6, 14.6.1]
Enable/Disable/IsEnabled(target);
target: POLYGON_SMOOTH, CULL_FACE

Fragment Shaders [15.2]

void BindFragDatalLocationIndexed(
uint program, uint colorNumber,
uint index, const char *name);

void BindFragDataLocation(uint program,
uint colorNumber, const char *name);

int GetFragDataLocation(uint program,
const char *name);

int GetFragDatalndex(uint program,
const char *name);

Compute Shaders [19]

void DispatchCompute(uint num_groups_x,
uint num_groups_y, uint num_groups_z);

void DispatchComputelndirect(
intptr indirect);

www.khronos.org/opengl

Per-Fragment Operations
Scissor Test [17.3.2]
Enable/Disable/IsEnabled(SCISSOR_TEST);
Enablei/Disablei/IsEnabledi(SCISSOR_TEST,
uint index);
void ScissorArrayv(uint first, sizei count,
const int *v);
void Scissorindexed(uint index, int left,
int bottom, sizei width, sizei height);
void Scissorindexedv(uint index, int *v);
void Scissor(int eft, int bottom, sizei width,
sizei height);
Multisample Fragment Ops. [17.3.3]
Enable/Disable/IsEnabled(target);

target: SAMPLE_ALPHA_TO_{COVERAGE, ONE]},
SAMPLE_COVERAGE, SAMPLE_MASK

void SampleCoverage(float value,
boolean invert);

void SampleMaski(uint maskNumber,
bitfield mask);

Stencil Test [17.3.5]
Enable/Disable/IsEnabled(STENCIL_TEST);

Whole Framebuffer

Selecting Buffers for Writing [17.4.1]
void DrawBuffer(enum buf);
buf: [Tables 17.4-5] NONE,

{FRONT, BACK}_{LEFT, RIGHT}, FRONT, BACK, LEFT,

RIGHT, FRONT_AND_BACK,
COLOR_ATTACHMENT (i = [0,
MAX_COLOR_ATTACHMENTS - 1])

void NamedFramebufferDrawBuffer(
uint framebuffer, enum buf);
buf: See DrawBuffer

void DrawBuffers(sizei n, const enum *bufs);

*bufs: [Tables 17.5-6] {FRONT, BACK}_{LEFT, RIGHT},

NONE, COLOR_ATTACHMENT; (i = [0,
MAX_COLOR_ATTACHMENTS - 1])

void NamedFramebufferDrawBuffers(
uint framebuffer, sizei n,
const enum *bufs);
*bufs: See DrawBuffers

Reading and Copying Pixels
Reading Pixels [18.2]
void ReadBuffer(enum src);
src: NONE, {FRONT, BACK}_{LEFT, RIGHT},
FRONT, BACK, LEFT, RIGHT,
FRONT_AND_BACK, COLOR_ATTACHMENTi
(i=[0, MAX_COLOR_ATTACHMENTS - 1])

void NamedFramebufferReadBuffer(
uint framebuffer, enum src);
src: See ReadBuffer

void ReadPixels(int x, int y, sizei width,
sizei height, enum format, enum type,
void *data);

format: STENCIL_INDEX, RED, GREEN, BLUE,
RG, RGB, RGBA, BGR, DEPTH_{COMPONENT,
STENCIL}, {RED, GREEN, BLUE, RG, RGB}_
INTEGER, {RGBA, BGR, BGRA}_INTEGER,
BGRA [Table 8.3]

type: [HALF_]FLOAT, [UNSIGNED_]BYTE,
[UNSIGNED_JSHORT, [UNSIGNED_]INT,
FLOAT_32_UNSIGNED_INT_24_8_REY,
UNSIGNED_{BYTE, SHORT, INT}_*
values in [Table 8.2]

void ReadnPixels(int x, int y, sizei width,
sizei height, enum format, enum type,
sizei bufSize, void *data);

format, type: See ReadPixels

Final Conversion [18.2.8]

void ClampColor(enum target, enum clamp);
target: CLAMP_READ_COLOR
clamp: TRUE, FALSE, FIXED_ONLY

Copying Pixels [18.3]

void BlitFramebuffer(int srcX0, int srcY0,
int srcX1, int srcY1, int dstX0, int dstY0,
int dstX1, int dstY1, bitfield mask,
enum filter);

©2017 Khronos Group - Rev. 0717

void StencilFunc(enum func, int ref,
uint mask);
func: NEVER, ALWAYS, LESS, GREATER, EQUAL,
LEQUAL, GEQUAL, NOTEQUAL

void StencilFuncSeparate(enum face,
enum func, int ref, uint mask);
func: See StencilFunc

void StencilOp(enum sfail, enum dpfail,
enum dppass);

void StencilOpSeparate(enum face,
enum sfail, enum dpfail, enum dppass);
face: FRONT, BACK, FRONT_AND_BACK
sfail, dpfail, dppass: KEEP, ZERO, REPLACE, INCR,
DECR, INVERT, INCR_WRAP, DECR_WRAP

Depth Buffer Test [17.3.6]
Enable/Disable/IsEnabled(DEPTH_TEST);

void DepthFunc(enum func);
func: See StencilFunc

Occlusion Queries [17.3.7]
BeginQuery(enum target, uint id);

EndQuery(enum target);
target: SAMPLES_PASSED, ANY_SAMPLES_PASSED,
ANY_SAMPLES_PASSED_CONSERVATIVE

Fine Control of Buffer Updates [17.4.2]

void ColorMask(boolean r, boolean g,
boolean b, boolean a);

void ColorMaski(uint buf, boolean r,
boolean g, boolean b, boolean a);

void DepthMask(boolean mask);
void StencilMask(uint mask);

void StencilMaskSeparate(enum face,
uint mask);
face: FRONT, BACK, FRONT_AND_BACK

Clearing the Buffers [17.4.3]
void Clear(bitfield buf);
buf: 0 or the OR of
{COLOR, DEPTH, STENCIL}_BUFFER_BIT

void ClearColor(float r, float g, float b, float a);
void ClearDepth(double d);

void ClearDepthf(float d);

void ClearStencil(int s);

Debug Output [20]

Enable/Disable/IsEnabled(DEBUG_OUTPUT);
Debug Message Callback [20.2]
void DebugMessageCallback(
DEBUGPROC callback,
const void *userParam);
callback: has the following prototype:
void callback(enum source, enum type,
uint id, enum severity, sizei length,
const char *message,
const void*userParam);
source: DEBUG_SOURCE_X where X may be AP,
SHADER_COMPILER, WINDOW_SYSTEM,
THIRD_PARTY, APPLICATION, OTHER
type: DEBUG_TYPE_X where X may be ERROR,
MARKER, OTHER, DEPRECATED_BEHAVIOR,
UNDEFINED_BEHAVIOR, PERFORMANCE,
PORTABILITY, {PUSH, POP}_GROUP

mask: Bitwise 0 of the bitwise OR of
{COLOR, DEPTH, STENCIL}_BUFFER_BIT
filter: LINEAR, NEAREST

void BlitNamedFramebuffer(
uint readFramebuffer,
uint drawFramebuffer, int srcX0,
int srcY0, int srcX1, int srcY1, int dstX0,
int dstY0, int dstX1, int dstY1,
bitfield mask, enum filter);
mask, filter: See BlitFramebuffer

void CopylmageSubData(uint srcName,
enum srcTarget, int srcLevel, int srcX,
int srcY, int srcZ, uint dstName,
enum dstTarget, int dstLevel, int dstX,
int dstY, int dstZ, sizei srcWidth,
sizei srcHeight, sizei srcDepth);

srcTarget, dstTarget: See target for BindTexture in

section [8.1] on this card, plus
GL_RENDERTARGET

OpenGL 4.6 API Reference Guide

Blending [17.3.8]
Enable/Disable/IsEnabled(BLEND);

Enablei/Disablei/IsEnabledi(BLEND,
uint index);

void BlendEquation(enum mode);

void BlendEquationSeparate(enum modeRGB,
enum modeAlpha);
modeRGB, modeAlpha: MIN, MAX ,
FUNC_{ADD, SUBTRACT, REVERSE_SUBTRACT}

void BlendEquationi(uint buf, enum mode);

void BlendEquationSeparatei(uint buf,
enum modeRGB, enum modeAlpha);
modeRGB, modeAlpha:
See BlendEquationSeparate

void BlendFunc(enum src, enum dst);
src, dst: See BlendFuncSeparate

void BlendFuncSeparate(enum srcRGB,
enum dstRGB, enum srcAlpha,
enum dstAlpha);

srcRGB, dstRGB, srcAlpha, dstAlpha:

ZERO, ONE, SRC_ALPHA_SATURATE,
{SRC, SRC1, DST, CONSTANT}_{COLOR, ALPHA},
ONE_MINUS_{SRC, SRC1}_{COLOR, ALPHA},
ONE_MINUS_{DST, CONSTANT}_{COLOR, ALPHA}

void ClearBuffer{i f ui}v(enum buffer,
int drawbuffer, const T *value);
buffer: COLOR, DEPTH, STENCIL

void ClearNamedFramebuffer{i f ui}v(
uint framebuffer, enum buffer,
int drawbuffer, const T *value);
buffer: See ClearBuffer{i f uijv

void ClearBufferfi(enum buffer,
int drawbuffer, float depth, int stencil);
buffer: DEPTH_STENCIL

void ClearNamedFramebufferfi(
uint framebuffer, enum buffer,
int drawbuffer, float depth, int stencil);
buffer: See ClearBufferi

Invalidating Framebuffers [17.4.4]
void InvalidateSubFramebuffer(
enum target, sizei numAttachments,
const enum *attachments, int x, int y,
sizei width, sizei height);
target: [DRAW_, READ_]FRAMEBUFFER

severity: DEBUG_SEVERITY_{HIGH, MEDIUM},
DEBUG_SEVERITY_{LOW, NOTIFICATION}

Controlling Debug Messages [20.4]
void DebugMessageControl(enum source,
enum type, enum severity, sizei count,
const uint *ids, boolean enabled);
source, type, severity: See DebuckMessageCallback
(above), plus DONT_CARE

Externally Generated Messages [20.5]
void DebugMessagelnsert(enum source,
enum type, uint id, enum severity,
int length, const char *buf);
source: DEBUG_SOURCE_{APPLICATION, THIRD_PARTY}
type, severity: See DebugMessageCallback

Debug Groups [20.6]
void PushDebugGroup(enum source,
uint id, sizei length, const char *message);
source: See DebugMessagelnsert

void PopDebugGroup(void);

State and State Requests
A complete list of symbolic constants for states is
shown in the tables in [23].

Simple Queries [22.1]

void GetBooleanv(enum pname, boolean *data);

void GetlIntegerv(enum pname, int *data);
void GetInteger64v(enum pname, int64 *data);
void GetFloatv(enum pname, float *data);
void GetDoublev(enum pname, double *data);

void GetDoublei_v(enum target, uint index,
double *data);

void GetBooleani_v(enum target, uint index,
boolean *data);

void BlendFunci(uint buf, enum src, enum dst);
src, dst: See BlendFuncSeparate

void BlendFuncSeparatei(uint buf,
enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);
dstRGB, dstAlpha, srcRGB, srcAlpha:
See BlendFuncSeparate

void BlendColor(float red, float green, float blue,
float alpha);

Dithering [17.3.10]
Enable/Disable/IsEnabled(DITHER);

Logical Operation [17.3.11]
Enable/Disable/IsEnabled(COLOR_LOGIC_OP);

void LogicOp(enum op);
op: CLEAR, AND, AND_REVERSE, COPY, AND_INVERTED,
NOOP, XOR, OR, NOR, EQUIV, INVERT, OR_REVERSE,
COPY_INVERTED, OR_INVERTED, NAND, SET

Hints [21.5]

void Hint(enum target, enum hint);
target: FRAGMENT_SHADER_DERIVATIVE_HINT,
TEXTURE_COMPRESSION_HINT,
{LINE, POLYGON}_SMOOTH_HINT
hint: FASTEST, NICEST, DONT_CARE

attachments: COLOR_ATTACHMENT;/, DEPTH, COLOR,
{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT,
{FRONT, BACK}_{LEFT, RIGHT}, STENCIL

void InvalidateNamedFramebufferSubData(
uint framebuffer, sizei numAttachments,
const enum *attachments, int x, int y,
sizei width, sizei height);
attachments: See InvalidateSubFramebuffer

void InvalidateFramebuffer(
enumtarget, sizei numAttachments,
const enum *attachments);
target, *attachments: See InvalidateSubFramebuffer

void InvalidateNamedFramebufferData(
uint framebuffer, sizei numAttachments,
const enum *attachments);
*attachments: See InvalidateSubFramebuffer

Debug Labels [20.7]
void ObjectLabel(enum identifier, uint name,
sizei length, const char */abel);
identifier: BUFFER, FRAMEBUFFER, RENDERBUFFER,
PROGRAM_PIPELINE, PROGRAM,
QUERY, SAMPLER, SHADER, TEXTURE,
TRANSFORM_FEEDBACK, VERTEX_ARRAY

void ObjectPtrLabel(void* ptr, sizei length,
const char *label);

Synchronous Debug Output [20.8]
Enable/Disable/IsEnabled(
DEBUG_OUTPUT_SYNCHRONOUS);

Debug Output Queries [20.9]

uint GetDebugMessageLog(uint count,
sizei bufSize, enum *sources, enum *types,
uint *ids, enum *severities, sizei *lengths,
char *messagelLog);

void GetObjectLabel(enum identifier,
uint name, sizei bufSize, sizei *length,
char *label);

void GetObjectPtrLabel(void* ptr, sizei bufSize,
sizei *length, char *label);

void Getlntegeri_v(enum target, uint index,
int *data);

void GetFloati_v(enum target, uint index,
float *data);

void Getlnteger64i_v(enum target, uint index,
int64 *data);

boolean IsEnabled(enum cap);

boolean IsEnabledi(enum target, uint index);
String Queries [22.2]

void GetPointerv(enum pname, void **params);

ubyte *GetString(enum name);
name: RENDERER, VENDOR, VERSION,
SHADING_LANGUAGE_VERSION

(Continued on next page) P

www.khronos.org/opengl

OpenGL 4.6 API Reference Guide

<« States, State Requests (cont.) prame: NUM_SAMPLE_COUNTS, enum pname, uint index, int *param);
! g () CLEAR_{BUFFER, TEXTURE}, READ_PIXELS[_FORMAT, _TYPE], pname: TRANSFORM_FEEDBACK_BUFFER_BINDING

ubyte *GetStringi(enum name, uint index); COLOR_ENCODING, SAMPLES, SHADER_IMAGE_ATOMIC, . 3 .
name: EXTENSIONS, SHADING_LANGUAGE_VERSION, COLOR_{COMPONENTS, RENDERABLE}, SHADER_IMAGE_{LOAD, STORE}, void GetTransformFeedbacki64_v(uint xfb,
SPIR_V_EXTENSIONS COMPUTE_TEXTURE, SIMULTANEOUS_TEXTURE_AND_DEPTH_TEST, enum pname, uint index, int64 *param);
index: DEPTH_{COMPONENTS, RENDERABLE}, SIMULTANEOUS_TEXTURE_AND_DEPTH_WRITE, pname: TRANSFORM_FEEDBACK_BUFFER_START,
[0, NUM_EXTENSIONS - 1] (if name is EXTENSIONS); FILTER, FRAMEBUFFER_BLEND, SIMULTANEOUS_TEXTURE_AND_STENCIL_TEST, TRANSFORM_FEEDBACK_BUFFER_SIZE
[0, NUM_SHADING_LANGUAGE_VERSIONS-1] FRAMEBUFFER_RENDERABLE[_LAYERED], SIMULTANEOUS_TEXTURE_AND_STENCIL_WRITE,
(if name is SHADING_LANGUAGE_VERSION) {FRAGMENT, GEOMETRY}_TEXTURE, SRGB_{READ, WRITE},
. GET_TEXTURE_IMAGE_FORMAT, STENCIL_{COMPONENTS, RENDERABLE},
Internal Format Queries [22.3] GET_TEXTURE_IMAGE_TYPE, TESS_{CONTROL, EVALUATION} TEXTURE,
void Getlnternalformativ(enum target, IMAGE_COMPATIBILITY_CLASS, TEXTURE_COMPRESSED[_BLOCK_SIZE],
enum internalformat, enum pname, IMAGE_PIXEL_{FORMAT, TYPE}, TEXTURE_COMPRESSED_BLOCK_{HEIGHT, WIDTH}
sizei bufSize, int *params); IMAGE_FORMAT_COMPATIBILITY_TYPE, TEXTURE_GATHER[_SHADOW],
target, pname, internalformat: IMAGE_TEXEL_SIZE, TEXTURE_IMAGE_FORMAT,
See Getinternalformati64v INTERNALFORMAT_{PREFERRED, SUPPORTEDY}, TEXTURE_IMAGE_TYPE,
) . INTERNALFORMAT_{RED, GREEN, BLUE}_SIZE, TEXTURE_{SHADOW, VIEW},
void GetInternalformati6v(enum target, INTERNALFORMAT _{DEPTH, STENCIL}_SIZE, VERTEX_TEXTURE,
enum internalfor st G (e, INTERNALFORMAT {ALPHA, SHARED}_SIZE, VIEW_COMPATIBILITY_CLASS
sizei bufSize, int64 *params); INTERNALFORMAT_{RED, GREEN}_TYPE,)
target: [Table 22.2] |NTERNALFORMAT_{BLUE, ALPHA}_TYPE, TransformFeedback Queries [22.4]
TEXTURE_{1D, 2D, 3D, CUBE_MAP}[_ARRAY], INTERNALFORMAT_{DEPTH, STENCIL}_TYPE, void GetTransformFeedbackiv(uint x/b,
TEXTURE_2D_MULTISAMPLE[_ARRAY], [MANUAL_GENERATE_]MIPMAP, enum pname, int *param);
WAL O RG, AR MAX_COMBINED_DIMENSIONS, pname: TRANSFORM_FEEDBACK_{PAUSED, ACTIVE}
internalformat: any value MAX_{WIDTH, HEIGHT, DEPTH, LAYERS},) T
void GetTransformFeedbacki_v(uint xfb,

OpenGL Compute Programming Model and Compute Memory Hierarchy

ader Storage Buffer Object (SSB

Uniform Buffer Object (UBO Work Group (0, 1) | Work Group(1, 1) || Work Group (2, 1)
: mommE (EEE] (Emo) Work Group (2, 0)
. Texture Buffer Object (TBO) [ma|[=a]ma|=e] (o] me]wa] [ma][ma][me][=a]
. (0, L (1, . (2, Inv. (3,1)
r Texture A Work Group (2, 0)
i [
r Image \

N
. Atomic Counters . (2, Inv. (3, 0)

gl_NumiorkGroups = (4,2,0) A / .

Use the barrier function to synchronize invocations in a work group:
void barrier();

Use the memoryBarrier* or groupMemoryBarrier functions to order
reads/writes accessible to other invocations:

void memoryBarrier();

void memoryBarrierAtomicCounter();

void memoryBarrierBuffer(); Invocation (1, 0)

void memoryBarrierImage(); .

void memoryBarrierShared(); // Only for compute shaders gl_WorkGroupSize = (4,2,0)

void groupMemoryBarrier(); // Only for compute shaders g1_WorkGroupID = (2,0,0)
Use the compute shader built-in variables to specifiy work groups and invocations: gl_LocalInvocationID = (1,8,0)

in vec3 gl_NumhorkGroups; // Number of workgroups dispatched gl_GlobalInvocationID = (9,3,0)

const vec3 gl_WorkGroupSize; // Size of each work group for current shader
in vec3 gl_WorkGroupID; // Index of current work group being executed
in vec3 gl_LocalInvocationID; // index of current invocation in a work group
in vec3 gl_GlobalInvocationID; // Unique ID across all work groups and threads. (gl_GlobalInvocatlonID = gl_WorkGroupID * gl WorkGroupSize + gl_LocalInvocationID)

OpenGL Texture Views and Texture Object State

Texture Object New Texture Object

Sampler || Sampler Textire Texture Sampler Sampler
Parameters Parameters Parmneiers Parameters Parameters Parameters
(mutable) (mutable) (reset to default) (reset to default) (mutable)

Use sampler object i Texture Vie Use sampler object
if bound (i (im if bound

Created with TexStorage*() Created with TextureView()

4 Texel Data >
Texture Lookup (mutable, ref counted) Texture Lookup [To rest of

y) pipeline
Hardware _Texture levels selected by view pmap chain . Hardware —>

< — Texture levels selected by view
L S|
T 31

|

To rest of
pipeline

Texture state set with TextureView
enum internalformat // base internal format uint minlevel // first level of mipmap uint minlayer // first layer of array texture
enum target // texture target uint numlevels // number of mipmap levels uint numlayers // number of layers in array

Sampler Parameters (mutable) Texture Parameters (immutable
TEXTURE_BORDER_COLOR TEXTURE_WIDTH TEXTURE_HEIGHT <target>

TEXTURE_COMPARE_{FUNC, MODE} TEXTURE_DEPTH TEXTURE_FIXED_SAMPLE_LOCATIONS TEXTURE_INTERNAL_FORMAT

TEXTURE LOD BIAS TEXTURE_COMPRESSED TEXTURE_COMPRESSED_IMAGE_SIZE TEXTURE_VIEW_{MIN,NUM} LEVEL
TEXTURE_{MAX, MIN} LOD TEXTURE_IMMUTABLE_FORMAT TEXTURE_SAMPLES TEXTURE_IMMUTABLE_LEVELS
TEXTURE_{MAG,MIN}_FILTER Texture Parametereimucg TEXTURE_{RED, GREEN, BLUE , ALPHA, DEP
TEXTURE_MAX_ANISTOPY TEXTURE_SWIZZLE_{R,G,B,A} TEXTURE_MAX_LEVEL TEXTURE_{RED, GREEN, BLUE, ALPHA, DEP
TEXTURE_WRAP_{S,T,R} TEXTURE_BASE_LEVEL DEPTH_STENCIL_TEXTURE_MODE

©2017 Khronos Group - Rev. 0717 www.khronos.org/opengl

OpenGL 4.6 API Reference Guide

OpenGL P'pelme FROM APPLICATION FROM APPLICATION
A typical program that uses OpenGL A 4 v

begins with calls to open a window into ——il Vertex Puller I . Dispatch Indirect Buffer B——>I Dispatch

the framebuffer into which the program . Element Array Buffer B ¥ ¥

will draw. Calls are made to allocate a GL - | Vertex Shader “_

context which is then associated with the B B

window, then OpenGL commands can be v

issued. . Vertex Buffer Object I; | Tessellation Control Shader k- B
v

The heavy black arrows in this illustration lation Primitt _ B
show the OpenGL pipeline and indicate I Tessellation Primitive Gen. I Shader Storage

data flow.

Compute Shader

| Tessellation Eval. Shader F‘

[Blue blocks indicate various buffers
that feed or get fed by the OpenGL | Geometry Shader F‘ B
pipeline.

B

D Green blocks indicate fixed function ransform Feedback Buffer :} Transform Feedback Uniform Block

stages.

D Yellow blocks indicate programmable Rasterization
stages.
v

Texture binding Fragment Shader
B3 Buffer binding

k_ FROM APPLICATION
v

- il
I Per-Fragment Operations ' ReslbnpackBury B

v

Framebuffer v
Pixel Pack Pixel Pack Buffer B

Vertex & Tessellation Details
Vertex Vertex position Primitive data

Each vertex is processed either by a vertex shader position (clip coords) (point, line,
or fixed-function vertex processing (compatibility Primitive triangle, patch)
Vertex Shader) / —>

only) to generate a transformed vertex, then Vertex

assZZ‘angd into primitives. Tessellation (if enabled) attributes R osembiy
operates on patch primitives, consisting of a fixed-

size collection of vertices, each with per-vertex

attributes and associated per-patch attributes. Lighting, Rasterpos Primitive mode

Zisfne;l)lfp ggtgﬁr;tnrglf:ran(::irtl(gee:febrﬁi)atr:iin;];?fm " il to pixel primitive rasterization (not shown)
patch attributes for a new output patch.

Associated data

A ﬁxe'd'—function primitive generator Primitive data Primitive data
subdivides the patch according to (point, line, (vertex pos., colors,
tessellation levels computed in the triangle, patch) Vertices other assoc. data)
tessellation control shaders or specified » Tessellation Primitive Tessellation Primitive 4

as fixed values in the API (TCS disabled). Control Shader Assembly Evaluation Shader Assembly
The tessellation evaluation shader
computes the position and attributes of
each vertex produced by the tessellator.

Tess levels

Primitive data bypass
(tessellation control shader disabled)

[] Orange blocks indicate features of the Core

specification. Primitive

1 Purple blocks indicate features of the Tess parameters "| Generator Connectivity
Compatibility specification.

!
/
;
:
;
/
;
/
;
/
;
/
;
/
;
/
;
Tessellation ;
;
;
;
;
;
;
;
;
;
;
;
;
;

>
>

Green blocks indicate features new or Primitive data bypass
significantly changed with OpenGL 4.x. (tessellation disabled)

Geometry & Follow-on Details

Geometry shaders (if enabled) consume L s 3
individual primitives built in previous primitive ?Jgrtgvs:satiolors tream
ars]semblv stagef{ gor each input primitive, other assoc. data) Geometry Primitive Stream 2 Eansioirs
the geometry shader can output zero or more Stream 1

vertices, with each vertex directed at a specific Shader p>semilg S 0 feedback
vertex stream. The vertices emitted to each tream
stream are assembled into primitives according l Output primitive mode f vVVvVvYvYYy omer e
to the geometry shader’s output primitive type. " to Buffer Objects

|

Vertex position N

Stream 0

vVvYy

Transform feedback (if active) writes selected Primitive data bypass
vertex attributes of the primitives of all vertex (geometry shader disabled), Stream 0 only
streams into buffer objects attached to one or
more binding points.
User clip planes
(compatibility only)

Clip distances Normalized
Vertex position \ coor%s coords
Orange blocks indicate features of the Core (clip coords) X ;
specification. Clipping, Per;i;‘al (ie;:ve 1\'{' ::Z:) (::‘ Front/Back id
Purple blocks indicate features of the including Face To

Compatibility specification. color and i Rasterization
° ' Colors : 5|'.Flc|a't —>| associated . Final Color Colors -
[] Green blocks indicate features new or Other ading it Processing
significantly changed with OpenGL 4.x. assoc. data 9t Other assoc. data

Primitives on vertex stream zero are then
processed by fixed-function stages, where they
are clipped and prepared for rasterization.

©2017 Khronos Group - Rev. 0717 www.khronos.org/opengl

OpenGL Shading Language 4.60.1 Reference Card Page 9

The OpenGLe Shading Language is used to create Preprocessor [3.3] Predefined Macros o

shaders for each of the programmable processors Preprocessor Operators CUNE__FILE_ DT‘C_Irrr]lal integer _con_stabnt& _FILE_ ;avs
contained in the OpenGL processing pipeline. The #version 450 Required when using version 4.50. VERSION ‘I’)Vec'?m:ril:]ft?gztrrlggglu;ng processed.
OpenGL Shading Language is actually several closely #iversion 450 profile profile is core, compatibility, or es (for = — e

: GL_core_profile Defined as 1
related languages. Currently, these processors are the sextensi Esbvehm?ns 1'00(3'00’ o[j'm)' GL_es_profile 1if the ES profile is supported
. . . extension ® pehavior: require, enable, warn, - -
vertex, tessellation control, tessellation evaluation, o disable 61_compatibility_profile Defined ashl if the |m;;!$mentaf:':on
geometry, fragment, and compute shaders. behavior « extension_name: extension e il I AR i

: . . P i Defined and equals 100 when shaders are
A X #extension all : behavior supported by compiler, or “all N
[n.n.n] and [Table n.n] refer to sections and tables in e Jeal: LS compiled for OpenGL SPIR-V.
the OpenGL Shading Language 4.60.1 specification at Preprocessor Directives
www.khronos.org /opengl # #define #elif #else #endif #error Hextension
#if #ifdef #ifndef #line #pragma #undef #version

Operators and Expressions [5.1] 3 prefix increment and decrement 11, | bit-wise inclusive or Vector & Scalar Components [5.5]

The following operators are numbered in order : unary 12. && logical and In addition to array numeric subscript syntax,
of precedence. Relational and equality operators multiplicative 13. AR logical exclusive or names of vector and scalar components are
evaluate to Boolean. Also See lessThan(), equal(). additive 0 logicalinclusive or denoted by a single letter. Components can be

4

: L izzled and replicated. Scalars h I

1. () parenthetical grouping 6. bit-wise shift 15. oF selects an entire operand swizzled and replicated. Scalars have only an x, r,
7 relational S or s component.

8 *= [z assignment {x y,z,w} Points or normals
%= <<=>>= arithmetic assignments

9 g {r,9,b, a}

[array subscript N
() equality 16.

function call, constructor, structure

field, selector, swizzle bit-wise and & A= |= Colors

+ - postfixincrement and decrement 10. Mecimodidnar 17. , sequence {s,t,p,q} Texture coordinates

Types [4.1] Floating-Point Opaque Types Signed Integer Opaque Types (cont’d) Unsigned Integer Opaque Types (cont’d)
sampler{1D,2D,3D} 1D, 2D, or 3D texture iimage2DRect int. 2D rectangular image uimage2DMSArray | uint 2D multi-sample array image
Transparent Types image{1D,2D,3D} . ler[1,2DA T ot 3 Y ! p! Y Imag
void no function return value Isampler{1,2|DArray | integer 1D, 2D array texture usamplerCubeArray | uint cube map array texture
iimage[1,2]DArray |integer 1D, 2D array image uimageCubeArray
isamplerBuffer integer buffer texture

samplerCube cube mapped texture
bool Boolean imageCube

int, uint signed/unsigned integers sampler2DRect rectangular texture - . .
float single-precision floating-point image2DRect M iy integeoutierinage int - uint uvec2 dvec2
scalar sampler{1D,2D}Array 1D or 2D array texture isampler2DMS int. 2D multi-sample texture eI, float e dvec3

double double-precision floating scalar | | image{1D,2D}Array iimage2DMS int. 2D multi-sample image int, uint, float -> double | | uvec4 dvecd
vec, vec3, vecd floating point vector §amplsrliflflﬁer buffer texture isampler2DMSArray | int. 2D multi-sample array tex. ivec2 uvec2 vec2 dvec2
dvec?, dvec3, dvec4 | double precision floating-point BEBUITE] - = : - ivec3 uvec3 | | vec3 dvec3
vectors sampler2DMS 2D multi-sample texture || iMage2DMSArray |int. 2D multi-sample array image || jyac4 uvecd | | vecd dvecd
bvec2, bvec3, bvec4 | Boolean vectors image2DMS i lerCubeArray | int. cube map array texture ivec2 vec2 mat2 dmat2

ivec2, ivec3, ivecd | signed and unsigned integer sampler2DMSArray 2D multi-sample array iimageCubeArray :z:gi zzii 223 gm::i

uvec2, uvec3, uvecd | vectors image2DMSArray Lextile 2) %3 dmat23
mat2, mat3, matd | 2x2, 3¢3, x4 float matrix samplerCubeArray cube map array texture | Unsigned Integer Opague Types — e e
lm":gﬁ, mat2x3, %-C30|g;n4nrgﬁt matrix of ';::ﬁs:‘f;:}:;xw DG atomic_uint uint atomic counter uvecd vech mat3x2 dmat3x2
mat3x2, mat3x3, 3:c<;|umn float matrix of sam:IerZDShadow with compafison usampler1,2,31D | uint 10, 20, or 3D texture !vec2 chec? mas e
mat3x4 2,3, 0r 4 rows sampler2DRectShadow | rectangular tex. / compare || Uimage[1,2,3]D uint 10, 2D, or 3D image ivec3 dvec3 matéx2 dmat:2
matdx2, matdx3, 4-column float matrix of samplerlDArrayShadow | 1D or 2D array depth usamplerCube uint cube mapped texture ivecd dvecd mat4x3 dmat4x4
matdx4 2,3, or 4 rows sampler2DArrayShadow | texture with comparison || uimageCube uint cube mapped image

dmat2, dmat3, 2x2, 3x3, 4x4 double-precision samplerCubeShadow cube map depth texture | usampler2DRect | uint rectangular texture
dmat4 float matrix with comparison

— i 2DRect uint rectangular image
dmat2x2, dmat2x3, | 2-col. double-precision float Uimage // Structures, blocks, and structure members
dmat2x4 matrix of 2, 3, 4 rows samplerCutearrayShadow tcg?ti gawpltai: rcagn?:;)rtizon usampler[1,2]DArray | 1D or 2D array texture // can be arrays. Arrays of arrays supported.
dmat3x2, dmat3x3, | 3-col. double-precision float uimage[1,2]DArray | 1D or 2D array image Structures | struct type-name {
dmat3xt matrix of 2,3, & rows Signed Integer Opaque Types usamplerBuffer uint buffer texture il

dmat4x2, dmatdx3, | 4-column double-precision float | |; ; 3 - - }struct-name(]; _
dmatdxd matrixof2, 3,4I'O?NS isampler[1,2,3]D integer 1D, 2D, or 3D texture uimageBuffer uint buffer image e

iimage[1,2,3]D integer 1D, 2D, or 3D image usampler2DMS uint 2D multi-sample texture Blocks in/out/uniform block-name {
e e GRS | fgits ot imberaicom

e i u ! 7 = optionally-qualified members
Quallﬁers isampler2DRect int, 2D rectangular texture usampler2DMSArray | uint 2D multi-sample array tex. }instance-name[l;

Storage Qualifiers [4.3] Gt d Continue 1 // optional instance name, optionally an array
Declarations may have one storage qualifier.

e (b crehterenan - Layout Qualifers 4.4

putp The following table summarizes the use of layout qualifiers applied to non- i Only | Var. Mem.
const read-only variable opaque types and the kinds of declarations they may be applied to.) orlgm_upper_left FC]
in linkage into shader from previous stage Op = Opaque types only, FC=gl_FragCoord only, FD = gl_FragDepth only. pixel_center_integer fragment in

" " early_fragment_tests
out linkage out of a shader to next stage Layout Qualifier %’:ll;’f' "\‘Ig'r" Block 32&" Allowed Interfaces local_size_{x,y, 7} = compute in

linkage between a shader, OpenGL, shared, packed, std{140, 430} X X local size_{xy,z} id = compute in

and the application {row, column}_major| X X X xfb_(buffefl; stt;é:z = vertex,eZe;seeillat:;r;, and
=) v 2

buffer accessible by shaders and OpenGL AP b'g?f:ﬁ = o X - uniform/buffer e tessegllaﬁon c?)lntrol out
compute shader only, shared among work align = X [points], line_strip,
items in a local work group triangle_strip
max_vertices =
stream =
depth_{any, greater, less,
unchanged}

fragment out and
8 constant_id =l
- only

uint cube map array image

Implicit Conversions

int. cube map array image

Aggregation of Basic Types
Arrays float[3] foo; float foo[3]; inta [3][2];

Layout Qualifier Allowed Interfaces

uniform

shared
uniform/buffer and
subroutine variables
location = all in/out, except for
component = compute

location = geometry out

Aucxiliary Storage Qualifiers

Use to qualify some input and output variables:
quality p P D fragment out

centroid | centroid-hased interpolation
. . index = - .
sampler | per-sample interpolation subroutine functions
triangles, quads, isolines Opaque Uniform Layout Qualifiers [4.4.6]
equal_spacing, Used to bind opaque uniform variables to specific buffers or units.

fractional_even_spacing, tessellation evaluation S 9 .
= T ’ inding = integer-constant-expression
Interface Blocks [4.3.9] fractional_odd_spacing - binding g P

idn, Tm't:'miform' gnd buffe:jvz; riable o oW, cow Atomic Counter Layout Qualifiers
ec ar'a ons can be grouped. For example: point_mode binding = integer-constant-expression
uniform Transform { - points geometry in/out offset = integer-constant-expression
// allowed restatement qualifier: [points], lines, triangles,
mat4 ModelViewMatrix; {triangles, lines}_adjacency
uniform mat3 NormalMatrix; invocations = geometry in

5 (Continued on next page) p>

const

patch per-tessellation-patch attributes

geometry in

©2017 Khronos Group - Rev. 0717 www.khronos.org/opengl

<4 Qualifiers (continued)

Format Layout Qualifiers

One qualifier may be used with variables

declared as “image” to specify the image

format.
binding = integer-constant-expression,
rgha{32,16}f, rg{32,16}, r{32,16}f,
rgha{16,8}, r11f gl1f b10f, rgb10_a2{ui},
rg{16,8}, r{16,8}, rgha{32,16,8}i, rg{32,16,8},
r{32,16,8}i, rgba{32,16,8}ui, rg{32,16,8}ui,
r{32,16,8}ui, rgba{16,8}_snorm,
rg{16,8}_snorm, r{16,8}_snorm

Interpolation Qualifiers [4.5]
Qualify outputs from vertex shader and inputs
to fragment shader.

smooth perspective correct interpolation
flat no interpolation
noperspective | linear interpolation

Parameter Qualifiers [4.6]
Input values copied in at function call time,
output values copied out at function return.

none | (default) same as in

in for parameters passed into function

const | for parameters that cannot be written to
out for parameters passed back out of of
function, but not initialized when passed in
for parameters passed both into and out

of a function

inout

Precision Qualifiers [4.7]
Qualify individual variables:
{highp, mediump, lowp} variable-declaration;
Establish a default precision qualifier:
precision {highp, mediump, lowp}
{int, float};

Built-In Variables 7]
Vertex Language
in int gl_VertexID;
in int gl_InstancelD;
in int gl_Baselnstance
in int gl_BaseVertex
in int gl_DrawID
out gl_PerVertex {
vec4 gl_Position;
float gl_PointSize;
float gl_ClipDistance[];
float gl_CullDistance[];

)

Tessellation Control Language
in gl_PerVertex {
vecd gl_Position;
float gl_PointSize;
float gl_ClipDistance[];
float gl_CullDistance[];
} gl_in[gl_MaxPatchVertices];

in int gl_PatchVerticesin;
in int gl_PrimitivelD;
in int gl_InvocationID;
out gl_PerVertex {
vecd gl_Position;
float gl_PointSize;
float gl_ClipDistancel[];
float gl_CullDistance[];
}gl_out(J;
patch out float gl_TessLevelOuter([4];
patch out float gl_TessLevellnner[2];

Tessellation Evaluation Language
in gl_PerVertex {

vecd gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

float gl_CullDistance[];
} gl_in[gl_MaxPatchVertices];

inint gl_PatchVerticesIn;
inint gl_PrimitivelD;
invec3 gl_TessCoord;
patch in float gl_TessLevelOuter[4];
patch in float gl_TessLevellnner[2];
out gl_PerVertex {

vecd gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

float gl_CullDistance[];

Invariant Qualifiers Examples [4.8]
These are for vertex, tessellation, geometry,
and fragment languages.

#pragma STDGL force all output variables
invariant(all) to be invariant

qualify a previously
declared variable
qualify as part of a
variable declaration

invariant gl_Position;

invariant centroid out
vec3 Color;

Precise Qualifier [4.9]
Ensures that operations are executed in stated
order with operator consistency. For example:

precise out vec4 Position=a *b +c * d;

Memory Qualifiers [4.10]
Variables qualified as “image” can have one or
more memory qualifiers.

coherent | reads and writes are coherent with
other shader invocations

underlying values may be changed by
other sources

won't be accessed by other code
read only
write only

volatile

restrict

readonly
writeonly

Specialization-Constant Qualifier [4.11]
SPIR-V specialization constants are expressed
in GLSL as const with the layout qualifier
constant_id. Function calls to user-defined
functions cannot be used to form constant
expressions. [also see 4.3.3]

Order of Qualification [4.12]

Multiple qualifiers may appear in a declaration
in any order, but must all appear before the
type. Only the layout qualifier may appear
more than once. A declaration may have

at most one storage qualifier, at most one
auxiliary storage qualifier, and at most one
interpolation qualifier.

Multiple memory qualifiers may be used. Any
rule violation will cause a compile-time error.

Geometry Language

in gl_PerVertex {
vecd gl_Position;
float gl_PointSize;
float gl_ClipDistancel];
float gl_CullDistance[];

}elin(J;

in int gl_PrimitivelDIn;

in int gl_InvocationlD;

out gl_PerVertex {

vecd gl_Position;

float gl_PointSize;

float gl_ClipDistance(];
float gl_CullDistance(];

I

out int gl_PrimitivelD;

out int gl_Layer;

out int gl_Viewportindex;

sment Language

in vecd gl_FragCoord;
bool gl_FrontFacing;
float gl_ClipDistance([];
float gl_CullDistance[];
vec2 gl_PointCoord;
int gl_PrimitivelD;
int gl_SamplelD;
vec2 gl_SamplePosition;
int gl_SampleMaskin(];
int gl_Layer;
int gl_Viewportindex;

in bool gl_Helperlnvocation;

out float gl_FragDepth;
out int gl_SampleMask([];

Compute Language
More information in diagram on page 6.

Work group dimensions
in uvec3 gl_NumWorkGroups;
const uvec3 gl_WorkGroupSize;
in uvec3 gl_LocalGroupSize;
Work group and invocation IDs
in uvec3 gl_WorkGrouplID;
in uvec3 gl_LocallnvocationID;
Derived variables
in uvec3 gl_GloballnvocationID;
in uint gl_Locallnvocationindex;

©2017 Khronos Group - Rev. 0717

OpenGL Shading Language 4.60.1 Reference Guide

Operations and Constructors

Vector & Matrix [5.4.2]

length() for matrices returns number of columns

length() for vectors returns number of components
mat2(vec2, vec2); // 1 col./arg.
mat2x3(vec2, float, vec2, float); // col. 2
dmat2(dvec, dvec2); // 1col./arg.
dmat3(dvec3, dvec3, dvec3); // 1 col./arg.

Structure Example [5.4.3]

Jlength() for structures returns number of members

struct light {members; };
light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

Matrix Examples [5.6]

Examples of access components of a matrix with

array subscripting syntax:
mat4 m; // mis a matrix
m[1] = vec4(2.0); //sets2nd col.toall 2.0
m[0][0] = 1.0; // sets upper left element to 1.0
m([2][3] = 2.0;

Statements and Structure

Subroutines [6.1.2]

Subroutine type variables are assigned to functions
through the UniformSubroutinesuiv command in the
OpenGLAPI.

Declare types with the subroutine keyword:

subroutine returnType subroutineTypeName(type0

arg0,
typel argl, ..., typen argn);

Associate functions with subroutine types of
matching declarations by defining the functions
with the subroutine keyword and a list of
subroutine types the function matches:

subroutine(subroutineTypeNameo, ...,
subroutineTypeNameN)

returnType functionName(type0 arg0,
typelargl, ..., typenargn){...}
// function body

Built-In Constants [7.3]
The following are provided to all shaders. The

actual values are implementation-dependent, but

must be at least the value shown.
const ivec3 gl_MaxComputeWorkGroupCount =

{65535, 65535, 65535} ;
ivec3 gl_MaxComputeWorkGroupSize[] =

{1024, 1024, 64};
int gl_MaxComputeUniformComponents = 1024;
int gl_MaxComputeTexturelmageUnits = 16;
int gl_MaxComputelmageUniforms = 8;
int gl_MaxComputeAtomicCounters = 8;
int gl_MaxComputeAtomicCounterBuffers = 1;
int gl_MaxVertexAttribs = 16;
int gl_MaxVertexUniformComponents = 1024;
int gl_MaxVaryingComponents= 60;
int gl_MaxVertexOutputComponents = 64;
int gl_MaxGeometrylnputComponents = 64;
int gl_MaxGeometryOutputComponents = 128;
int gl_MaxFragmentinputComponents = 128;
int gl_MaxVertexTexturelmageUnits = 16;
int gl_MaxCombinedTexturelmageUnits = 80;
const int gl_MaxTexturelmageUnits = 16;
const int gl_MaximageUnits = §;

gl_MaxCombinedimageUnitsAndFragmentOutputs = 8;

const int gl_MaximageSamples = 0;
const int gl_MaxVerteximageUniforms=0;
const int gl_MaxTessControllmageUniforms = 0;
const int gl_MaxTessEvaluationimageUniforms = 0;
const int gl_MaxGeometrylmageUniforms = 0;
const int gl_MaxFragmentimageUniforms = 8;
const int gl_MaxCombinedimageUniforms = 8;
const int gl_MaxFragmentUniformComponents = 1024;
const int gl_MaxDrawBuffers = 8;
const int gl_MaxClipDistances = 8;
const int gl_MaxGeometryTexturelmageUnits = 16;
const int gl_MaxGeometryOutputVertices = 256;
const int gl_MaxGeometryTotalOutputComponents = 1024;
const int gl_MaxGeometryUniformComponents = 1024;
const int gl_MaxGeometryVaryingComponents = 64;
const int gl_MaxTessControllnputComponents = 128;

const

const
const
const
const
const
const
const
const
const
const
const
const
const
const

// sets 4th element of 3rd col. t0 2.0

Examples of operations on matrices and vectors:
m=f*

v=f*y;
v=v*y;
m=m+/-m;
m=m*m;
=dot(v, v);
v = cross(v, v);

f

m; // scalar * matrix component-wise
// scalar * vector component-wise
// vector * vector component-wise
// matrix +/- matrix comp.-wise

// linear algebraic multiply

// vector dot product

// vector cross product

Array Example [5.4.4]
const float c[3];

c.length()

// will return the integer 3

Structure & Array Operations [5.7]
Select structure fields or length() method of an
array using the period (.) operator. Other operators:

field or method selector

1= equality

= assignment
[1 indexing (arrays only)

Array elements are accessed using the array
subscript operator ([]), e.g.:

diffuseColor += lightIntensity[3] *NdotL;

Declare subroutine type variables with a specific
subroutine type in a subroutine uniform variable
declaration:

subroutine uniform subroutineTypeName

subroutineVarName;

Iteration and Jumps [6.3-4]

Function
Iteration

call by value-return

for (;;) { break, continue }
while () { break, continue }

do { break, continue } while ();

Selection | if (){}

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

if (){}else {}

switch () { case integer: ... break; ...
default: ... }

void main()

break, continue, return

(There is no ‘goto’)

return in main()
discard // Fragment shader only

int gl_MaxTessControlOutputComponents = 128;
int gl_MaxTessControlTexturelmageUnits = 16;

int gl_MaxTessControlUniformComponents = 1024;
int gl_MaxTessControlTotalOutputComponents = 4096;
int gl_MaxTessEvaluationinputComponents = 128;
int gl_MaxTessEvaluationOutputComponents = 128;
int gl_MaxTessEvaluationTexturelmageUnits = 16;
int gl_MaxTessEvaluationUniformComponents = 1024;
int gl_MaxTessPatchComponents = 120;

int gl_MaxPatchVertices = 32;

int gl_MaxTessGenLevel = 64;

int gl_MaxViewports = 16;

int gl_MaxVertexUniformVectors = 256;

int gl_MaxFragmentUniformVectors = 256;

int gl_MaxVaryingVectors = 15;

int gl_MaxVertexAtomicCounters = 0;

int gl_MaxTessControlAtomicCounters = 0;

int gl_MaxTessEvaluationAtomicCounters = 0;

int gl_MaxGeometryAtomicCounters = 0;

int gl_MaxFragmentAtomicCounters = 8;

int gl_MaxCombinedAtomicCounters = 8;

int gl_MaxAtomicCounterBindings = 1;

int gl_MaxVertexAtomicCounterBuffers = 0;

int gl_MaxTessControlAtomicCounterBuffers = 0;
int gl_MaxTessEvaluationAtomicCounterBuffers = 0;
int gl_MaxGeometryAtomicCounterBuffers = 0;

int gl_MaxFragmentAtomicCounterBuffers = 1;

int gl_MaxCombinedAtomicCounterBuffers = 1;

int gl_MaxAtomicCounterBufferSize = 32;

int gl_MinProgramTexelOffset = -8;

int gl_MaxProgramTexelOffset = 7;

const int gl_MaxTransformFeedbackBuffers = 4;
gl_MaxTransformFeedbackinterleavedComponents = 64;

const int gl_MaxCullDistances = 8;

const int gl_MaxCombinedClipAndCullDistances = 8;

const int gl_MaxSamples = 4;

const int gl_MaxVerteximageUniforms = 0;

const int gl_MaxFragmentlmageUniforms = 8;

const int gl_MaxComputelmageUniforms = 8;

const int gl_MaxCombinedimageUniforms = 48;

const int gl_MaxCombinedShaderOutputResources = 16;

www.khronos.org/opengl

OpenGL Shading Language 4.60.1 Reference Guide

Built-In Functions
Angle & Trig. Functions [8.1]
Functions will not result in a divide-by-zero
error. If the divisor of a ratio is 0, then results
will be undefined. Component-wise operation.
Parameters specified as angle are in units of
radians. Tf=float, vecn.
Tf radians(Tf degrees) degrees to radians
Tf degrees(Tf radians)

Tf sin(Tf angle)

radians to degrees
sine

Tf cos(Tf angle) cosine
Tf tan(Tf angle)
Tf asin(Tf x)

Tf acos(Tf x)

Tf atan(Tfy, Tf x)
Tf atan(Tf y_over_x)

Tf sinh(Tf x)
Tf cosh(Tf x)
Tf tanh(Tf x)
Tf asinh(Tf x)
Tf acosh(Tf x)
Tf atanh(Tf x)

tangent
arc sine

arc cosine
arc tangent

hyperbolic sine
hyperbolic cosine
hyperbolic tangent
hyperbolic sine
hyperbolic cosine

hyperbolic tangent

Exponential Functions [8.2]
Component-wise operation. Tf=float, vecn.
Td= double, dvecn. Tfd=Tf, Td

Tf pow(Tfx, Tfy)
Tf exp(Tf x)

Tf log(Tf x)

Tf exp2(Tf x)

Tf log2(Tf x) log,

Tfd sqrt(Tfd x) square root

Tfd inversesqrt(Tfd x) inverse square root

Common Functions [8.3]

Component-wise operation. Tf=float, vecn. Tb=bool,
bvecn. Ti=int, ivecn. Tu=uint, uvecn.

Td= double, dvecn. Tfd=Tf, Td. Tiu=Ti, Tu.

Returns absolute value:

Tfd abs(Tfd x) Ti abs(Ti x)

Returns -1.0, 0.0, or 1.0:

Tfd sign(Tfd x) Ti sign(Tix)

Returns nearest integer <= x:

Tfd floor(Tfd x)
Returns nearest integer with absolute value <= absolute
value of x:

Tfd trunc(Tfd x)
Returns nearest integer, implementation-dependent
rounding mode:

Tfd round(Tfd x)

Returns nearest integer, 0.5 rounds to nearest even integer:
Tfd roundEven(Tfd x)

Returns nearest integer >= x:
Tfd ceil(Tfd x)

Returns x - floor(x):

Tfd fract(Tfd x)
Returns modulus:

Tfd mod(Tfd x, Tfd y)

T T I
TF mod(Tf x, float) d mod(Td x, double y)

Returns separate integer and fractional parts:
Tfd modf(Tfd x, out Tfd /)

Returns minimum value:
Tfd min(Tfd x, Tfd y)

Tf min(Tf x, float y)
Td min(Td x, double y)

Tiu min(Tiu x, Tiu y)
Ti min(Tix, inty)
Tu min(Tu x, uint y)

(Continue J)

©2017 Khronos Group - Rev. 0717

Common Functions (cont.)
Returns maximum value:
Tfd max(Tfd x, Tfd y)
Tf max(Tf x, float y)
Td max(Td x, double y)

Tiu max(Tiu x, Tiuy)
Ti max(Tix, inty)
Tu max(Tu x, uint y)
Returns min(max(x, minVal), maxVal):

Tfd clamp(Tfd x, Tfd minVal, Tfd maxVal)

Tf clamp(Tf x, float minVal, float maxVal)

Td clamp(Td x, double minVal, double maxVal)

Tiu clamp(Tiu x, Tiu minVal, Tiu maxVal)

Ti clamp(Ti , int minVal, int maxVal)

Tu clamp(Tu x, uint minVal, uint maxVal)

Returns linear blend of x and y:
Tfd mix(Tfd x, Tfd y, Tfd a)
Tf mix(Tf x, Tf y, float a)
Td mix(Td x, Td y, double a)

Ti mix(Tix, Tiy, Tia)
Tu mix(Tux, Tuy, Tua)

Components returned come from x when a components
are true, from y when a components are false:

Tfd mix(Tfd x, Tfd y, Tha) ~ Th mix(Thx, Toy, Th a)
Tiu mix(Tiux, Tiuy, Tha)
Returns 0.0 if x < edge, else 1.0:
Tid step(Tfd edge, Tfd Td step(double edge, Td x)
Tf step(float edge, Tf x)
Clamps and smoothes:
Tfd smoothstep(Tfd edge0, Tfd edgeZ, Tfd x)
Tf smoothstep(float edgeo, float edge1, Tf x)
Td smoothstep(double edge0, double edgel, Td x)

Returns true if x is NaN:
Tb isnan(Tfd x)

Returns true if x is positive or negative infinity:
Tb isinf(Tfd x)

Returns signed int or uint value of the encoding of a float:
Ti floatBitsTolnt(Tf value)
Tu floatBitsToUint(Tf value)

Returns float value of a signed int or uint encoding of a float:

Tf intBitsToFloat(Ti value) Tf uintBitsToFloat(Tu value)

Computes and returns a*b + c. Treated as a single operation
when using precise:

Tfd fma(Tfd o, Tfd b, Tfd ¢)

Splits x into a floating-point significand in the range [0.5, 1.0)
and an integer exponent of 2:
Tfd frexp(Tfd x, out Ti exp)

Builds a floating-point number from x and the corresponding
integral exponent of 2 in exp:
Tfd Idexp(Tfd x, in Ti exp)

Floating-Point Pack/Unpack [8.4]
These do not operate component-wise.

Converts each component of v into 8- or 16-bit ints, packs
results into the returned 32-bit unsigned integer:

uint packUnorm4x8(vecé v)
uint packSnormdx8(vecd v)

uint packUnorm2x16(vec2 v)
uint packSnorm2x16(vec2 v)

Unpacks 32-bit p into two 16-bit uints, four 8-bit uints, or
signed ints. Then converts each component to a normalized
float to generate a 2- or 4-component vector:

vec2 unpackUnorm2x16(uint p)

vec2 unpackSnorm2x16(uint p)

vecd unpackUnormé4x8(uint p)

vecd unpackSnorm4x8(uint p)

Packs components of v into a 64-bit value and returns a
double-precision value:
double packDouble2x32(uvec2 v)

Returns a 2-component vector representation of v:
uvec2 unpackDouble2x32(double v)

Returns a uint by converting the components of a two-
component floating-point vector:
uint packHalf2x16(vec2 v)

Returns a two-component floating-point vector:
vec2 unpackHalf2x16(uint v)

Type Abbreviations for Built-in Functions:

Tf=float, vecn. Td =double, dvecn.
Tu=uint, uvecn. Ti=int, ivecn.

Tfd=float, vecn, double, dvecn.
Tiu=int, ivecn, uint, uvecn.

In vector types, nis 2, 3, or 4.

Tb=bool, bvecn.
Tvec=vecn, uvecn, ivecn.

Within any one function, type sizes and dimensionality must correspond after implicit type
conversions. For example, float round(float) is supported, but float round(vec4) is not.

Geometric Functions [8.5]

These functions operate on vectors as vectors, not
component-wise. Tf=float, vecn. Td =double, dvecn.
Tfd=float, vecn, double, dvecn.

float length(Tf x)

double length(Td x)

float distance(Tf p0, Tf p1)
double distance(Td p0, Td p1)
float dot(Tf x, Tf y)

double dot(Td x, Td y)

vec3 cross(vec3 x, vec3)
dvec3 cross(dvec3 x, dvec3 y)
Tfd normalize(Tfd x)

Tfd faceforward(Tfd N,
Tfd 1, Tfd Nref)

length of vector
distance between points
dot product

cross product

normalize vector to length 1

returns N if dot(Nref, /) <
0, else -N

reflection direction
Tfd reflect(Tfd /, Tfd N) 122 * dot(N,) * N
Tfd refract(Tfd /, Tfd N,

float eta) refraction vector

Matrix Functions [8.6]
NandMarel,?2,3,4.

mat matrixCompMult(mat x, mat y)
dmat matrixCompMult(dmat x, dmat y)

component-wise
multiply

outer product
(where N 1= M)

matN outerProduct(vech c, vecN r)
dmatN outerProduct(dvech c, dvecN r)

matNxM outerProduct(vecM c, vecN r)
dmatNxM outerProduct(dvecM c, dvecN r)

matN transpose(matN m)
dmatN transpose(dmatn m)

outer product

transpose

matNxM transpose(matMxN m)
dmatNxM transpose(dmatMxN m)

float determinant(matN m)
double determinant(dmatN m)

matN inverse(matN m)
dmatN inverse(dmatN m)

transpose
(where N 1= M)

determinant

inverse

Vector Relational Functions [8.7]
Compare x and y component-wise. Sizes of the
input and return vectors for any particular call
must match. Tvec=vecn, uvecn, ivecn.

bvecn lessThan(Tvec x, Tvec y) <

bvecn lessThanEqual(Tvec x, Tvec y)

bvecn greaterThan(Tvec x, Tvec y)

bvecn greaterThanEqual(Tvec x, Tvec y)

bvecn equal(Tvec x, Tvec y)

bvecn equal(bvecn x, bvecn)

bvecn notEqual(Tvec x, Tvec)

bvecn notEqual(bvecn x, bvecn y)

bool any(bvecn x)
bool all(bvecn x)

true if any component of x is true
true if all comps. of x are true
bvecn not(bvecn x) | logical complement of x

Integer Functions [8.8]
Component-wise operation. Tu=uint, uvecn.
Ti=int, ivecn. Tiu=int, ivecn, uint, uvecn.

Adds 32-bit uint x and y, returning the sum modulo 2°%:
Tu uaddCarry(Tu x, Tuy, out Tu carry)

Subtracts y from x, returning the difference if non-negative,
otherwise 2* plus the difference:
Tu usubBorrow(Tu X, Tuy, out Tu borrow)

Multiplies 32-bit integers x and y, producing a 64-bit result:
void umulExtended(Tu x, Tu y, out Tu msb, out Tu Isb)
void imulExtended(Ti x, Ti y, out Ti msb, out Ti sb)

Extracts bits [offset, offset + bits - 1] from value, returns

them in the least significant bits of the result:
Tiu bitfieldExtract(Tiu value, int offset, int bits)

(Continue 1)

Integer Functions (cont.)
Returns the reversal of the bits of value:
Tiu bitfieldReverse(Tiu value)
Inserts the bits least-significant bits of insert into base:
Tiu bitfieldInsert(Tiu base, Tiu insert, int offset, int bits)
Returns the number of bits set to 1:
Ti bitCount(Tiu value)
Returns the bit number of the least significant bit:
Ti findLSB(Tiu value)
Returns the bit number of the most significant bit:
Ti findMSB(Tiu value)

Texture Lookup Functions [8.9]
Available to vertex, geometry, and fragment
shaders. See tables on next page.

Atomic-Counter Functions [8.10]
Returns the value of an atomic counter.

Atomically increments ¢ then returns its prior value:
uint atomicCounterincrement(atomic_uint c)

Atomically decrements ¢ then returns its prior value:
uint atomicCounterDecrement(atomic_uint)

Atomically returns the counter for c:
uint atomicCounter(atomic_uint c)

Atomic operations performed on ¢, where Op may be Add,
Subtract, Min, Max, And, Or, Xor:

uint atomicCounterOp(atomic_uint ¢, uint data)

Atomically swap values of ¢ and data; returns its prior value:
uint atomicCounterCompSwap(atomic_uint ¢, uint data)

Atomically compare values of ¢ and compare; performs
atomic swap if equal:
uint atomicCounterCompSwap(atomic_uint c,
uint compare, uint data)

Atomic Memory Functions [8.11]
Operates on individual integers in buffer-object
or shared-variable storage. OP is Add, Min, Max,
And, Or, Xor, Exchange, or CompSwap.

uint atomicOP(coherent inout uint mem, uint data)

int atomicOP(coherent inout int mem, int data)

Image Functions [8.12]
In the image functions below, IMAGE_PARAMS
may be one of the following:
gimagelD image, int P
gimage2D image, ivec2 P
gimage3D image, ivec3 P
gimage2DRect image, ivec2 P
gimageCube image, ivec3 P
gimageBuffer image, int P
gimage1DArray image, ivec2 P
gimage2DArray image, ivec3 P
gimageCubeArray image, ivec3 P
gimage2DMS image, ivec2 P, int sample
gimage2DMSArray image, ivec3 P, int sample

Returns the dimensions of the images or images:
int imageSize(gimage{1D,Buffer} image)
ivec2 imageSize(gimage{2D,Cube,Rect, 1DArray,
2DMS} image)
ivec3 imageSize(gimage{Cube,2D,2DMS}Array image)
vec3 imageSize(gimage3D image)
Returns the number of samples of the image or images
bound to image:
int imageSamples(gimage2DMS image)
int imageSamples(gimage2DMSArray image)

Loads texel at the coordinate P from the image unit image:
gvecd imageLoad|(readonly IMAGE_PARAMS)

Stores data into the texel at the coordinate P from
the image specified by image:
void imageStore(writeonly IMAGE_PARAMS, gvect data)

(Continued on next page) p>

www.khronos.org/opengl

<« Built-In Functions (cont.)
Image Functions (cont.)

Adds the value of data to the contents of the selected texel:
uint imageAtomicAdd(coherent IMAGE_PARAMS, uint data)
int imageAtomicAdd(coherent IMAGE_PARAMS, int data)

Takes the minimum of the value of data and the contents
of the selected texel:
uint imageAtomicMin(coherent IMAGE_PARAMS, uint data)
int imageAtomicMin(coherent IMAGE_PARAMS, int data)

Takes the maximum of the value data and the contents
of the selected texel:
uint imageAtomicMax(coherent IMAGE_PARAMS, uint data)
int imageAtomicMax(coherent IMAGE_PARAMS, int data)

Performs a bit-wise AND of the value of data and the
contents of the selected texel:
uint imageAtomicAnd(coherent IMAGE_PARAMS, uint data)
int imageAtomicAnd(coherent IMAGE_PARAMS, int data)

Performs a bit-wise OR of the value of data and the
contents of the selected texel:
uint imageAtomicOr(coherent IMAGE_PARAMS, uint data)
int imageAtomicOr(coherent IMAGE_PARAMS, int data)

Performs a bit-wise exclusive OR of the value of data and
the contents of the selected texel:
uint imageAtomicXor(coherent IMAGE_PARAMS, uint data)
int imageAtomicXor(coherent IMAGE_PARAMS, int data)

(Continue 1)

Texture Functions [2.9]

Available to vertex, geometry, and fragment
shaders. gvec4=vec4, ivec4, uveca.
gsampler* =sampler*, isampler*, usampler*.

The P argument needs to have enough
components to specify each dimension, array
layer, or comparison for the selected sampler.
The dPdx and dPdy arguments need enough
components to specify the derivative for each
dimension of the sampler.

Texture Query Functions [8.9.1]
textureSize functions return dimensions of lod
(if present) for the texture bound to sampler.
Components in return value are filled in with the
width, height, depth of the texture. For array
forms, the last component of the return value is
the number of layers in the texture array.

{int,ivec2,ivec3} textureSize(
gsampler{1D[Array],2D[Rect,Array],Cube} samplerf,
int lod])
{int,ivec2,ivec3} textureSize(
gsampler{Buffer,2DMS[Array]}sampler)
{int,ivec2,ivec3} textureSize(
sampler{1D, 2D, 2DRect,Cube[Array]}Shadow sampler|,
int lod])

ivec3 textureSize(samplerCubeArray sampler, int lod)

textureQueryLod functions return the mipmap
array(s) that would be accessed in the x
component of the return value. Returns the
computed level of detail relative to the base level
in the y component of the return value.

vec2 textureQueryLod(
gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler,
{float,vec2,vec3} P)

vec2 textureQueryLod(
sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler,
{float,vec2,vec3} P)

textureQueryLevels functions return the number
of mipmap levels accessible in the texture
associated with sampler.

int textureQueryLevels(
gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler)

int textureQueryLevels(
sampler{1D[Array],2D[Array],Cube[Array]}Shadow sampler)

textureSamples returns the number of samples
of the texture.

int textureSamples(gsampler2DMS sampler)
int textureSamples(gsampler2DMSArray sampler)

©2017 Khronos Group - Rev. 0717

Image Functions (cont.)

Copies the value of data:
uint imageAtomicExchange(coherent IMAGE_PARAMS,
uint data)
int imageAtomicExchange(coherent IMAGE_PARAMS,
int data)
int imageAtomicExchange(coherent IMAGE_PARAMS,
float data)
Compares the value of compare and contents of selected
texel. If equal, the new value is given by data; otherwise,
it is taken from the original value loaded from texel:
uint imageAtomicCompSwap(coherent IMAGE_PARAMS,
uint compare, uint data)
int imageAtomicCompSwap|(coherent IMAGE_PARAMS,
int compare, int data)

Fragment Processing Functions [8.13]
Available only in fragment shaders.
Tf=float, vecn.

Derivative fragment-processing functions
Tf dFdx(Tf p)
Tf drdy(Tf p)

Tf dFdxFine(Tf p)
Tf dFdyFine(Tf p)

Tf dFdxCoarse(Tf p)
Tf dFdyCoarse(Tf p)

Tf fwidth(Tf p)
Tf fwidthFine(Tf p)
Tf fwidthCoarse(Tf p)

derivative in x and y, either
fine or coarse derivatives

fine derivative in x and y per
pixel-row/column derivative

coarse derivative in x and y per
2x2-pixel derivative

sum of absolute values of xand y
derivatives

Texel Lookup Functions [8.9.2]

Use texture coordinate P to do a lookup in the texture
bound to sampler. For shadow forms, compare is
used as Drsand the array layer comes from Pw.
For non-shadow forms, the array layer comes from
the last component of P.

gvech texture(

gsampler{1D[Array],2D[Array,Rect],3D,Cube[Array]} sampler,
{float,vec2,vec3,vecd} P, float bias])

float texture(
sampler{1D[Array],2D[Array,Rect],Cube}Shadow sampler,
{vec3,vecd} P, float bias])

float texture(gsamplerCubeArrayShadow sampler, vec4 P,
float compare)

Texture lookup with projection.

gvecd textureProj(gsampler{1D,2D[Rect],3D} sampler,
vec(2,3,4} P, float bias])

float textureProj(sampler{1D,2D[Rect]}Shadow sampler,
vect P, float bias])

Texture lookup as in texture but with explicit LOD.

gvect textureLod(
gsampler{1D[Array],2D[Array],3D,Cube[Array]} sampler,
{float,vec2,vec3} P, float lod)

float textureLod(sampler{1D[Array],2D}Shadow sampler,
vec3 P, float lod)

Offset added before texture lookup.

guect textureOffset(
gsampler{1D[Array],2D[Array,Rect],3D} sampler,
{float,vec2,vec3} P, {int,ivec2,ivec3} offset [, float bias])

float textureOffset(
sampler{1D[Array],2D[Rect,Array]}Shadow sampler,
{vec3, veca} P, {int,ivec2} offset [, float bias])

Use integer texture coordinate P to lookup a single
texel from sampler.

gvecd texelFetch(
gsampler{1D[Array],2D[Array,Rect],3D} sampler,
{int,ivec2,ivec3} P[, {int,ivec2} lod])

gecd texelFetch(gsampler{Buffer, 2DMS[Array]} sampler,
{int,ivec2,ivec3} P[, int sample])

Fetch single texel with offset added before texture lookup.

gvect texelFetchOffset(
gsampler{1D[Array],2D[Array],3D} sampler,
{int,ivec2,ivec3} P, int lod, {int,ivec2,ivec3} offset)
gvect texelFetchOffset(
gsampler2DRect sampler, ivec2 P, ivec2 offset)

OpenGL Shading Language 4.60.1 Reference Guide

Interpolation fragment-processing functions
Return value of interpolant sampled inside pixel and the
primitive:

Tf interpolateAtCentroid(Tf interpolant)
Return value of interpolant at location of sample # sample:

Tf interpolateAtSample(Tf interpolant, int sample)
Return value of interpolant sampled at fixed offset offset
from pixel center:

Tf interpolateAtOffset(Tf interpolant, vec2 offset)

Noise Functions [8.14]

Returns noise value. Available to fragment, geometry,
and vertex shaders. nis 2, 3, or 4:

float noisel(Tf x) vecn noisen(Tf x)

Geometry Shader Functions [8.15]
Only available in geometry shaders.

Emits values of output variables to current output
primitive stream stream:

void EmitStreamVertex(int stream)
Completes current output primitive stream stream and
starts a new one:

void EndStreamPrimitive(int stream)
Completes output primitive and starts a new one:

void EndPrimitive()
Emits values of output variables to the current output
primitive:

void EmitVertex()

Projective texture lookup with offset added before
texture lookup.

gvecd textureProjOffset(gsampler{1D,2D[Rect],3D} sampler,
vec{2,3,4} P, {int,ivec2,ivec3} offset [, float bias])

float textureProjOffset(
sampler{1D,2D[Rect]}Shadow sampler, vec4 P,
{int,ivec2} offset [, float bias])

Offset texture lookup with explicit LOD.

gvech textureLodOffset(
gsampler{1D[Array],2D[Array],3D} sampler,
{float,vec2,vec3} P, float lod, {int,ivec2,ivec3} offset)

float textureLodOffset(
sampler{1D[Array],2D}Shadow sampler, vec3 P, float lod,
{int,ivec2} offset)

Projective texture lookup with explicit LOD.

guecd textureProjLod(gsampler{1D,2D,3D} sampler,
vec{2,3,4} P, float lod)

float textureProjLod(sampler{1D,2D}Shadow sampler,
vecd P, float lod)

Offset projective texture lookup with explicit LOD.

gvecd textureProjLodOffset(gsampler{1D,2D,3D} sampler,
vec{2,3,4} P, float lod, {int, ivec2, ivec3} offset)

float textureProjLodOffset(sampler{1D,2D}Shadow sampler,
vec P, float lod, {int, ivec2} offset)

Texture lookup as in texture but with explicit gradients.

gvecd textureGrad(
gsampler{1D[Array],2D[Rect,Array],3D,Cube[Array]} sampler,
{float, vec2, vec3,vec4} P, {float, vec2, vec3} dPdyx,
{float, vec2, vec3} dPdy)

float textureGrad(
sampler{1D[Array],2D[Rect,Array], Cube}Shadow sampler,
{vec3,vecd} P, {float,vec2} dPd, {float,vec2, vec3} dPdy)

Texture lookup with both explicit gradient and offset.

gvecd textureGradOffset(
gsampler{1D[Array],2D[Rect,Array],3D} sampler,
{float,vec2,vec3} P, {float,vec2,vec3} dPdyx,
{float,vec2,vec3} dPdy, {int,ivec2,ivec3} offset)

float textureGradOffset(
sampler{1D[Array],2D[Rect,Array]}Shadow sampler,
{vec3,vec4} P, {float,vec2} dPdy, {float,vec2}dPdy,
{int,ivec2} offset)

Other Shader Functions [8.16-17]
See diagram on page 11 for more information.

Synchronizes across shader invocations:
void barrier()

Controls ordering of memory transactions issued by a
single shader invocation:

void memoryBarrier()

Controls ordering of memory transactions as viewed by
other invocations in a compute work group:

void groupMemoryBarrier()

Order reads and writes accessible to other invocations:
void memoryBarrierAtomicCounter()
void memoryBarrierShared()
void memoryBarrierBuffer()
void memoryBarrierimage()

Shader Invocation Group Functions
[8.18]

Available for multiple shader invocations grouped
into a single SIMD invocation group.

Returns true if value is true for (any active invocation, all
active invocations) in the group:

bool allinvocationsEqual(bool value)

bool alllnvocation(bool value)

Returns true if value is the same for all active
invocations in the group:
bool alllnvocationsEqual(bool value)

Texture lookup both projectively as in
textureProj, and with explicit gradient as in
textureGrad.

gvecd textureProjGrad(gsampler{1D,2D[Rect],3D} sampler,
{vec2,vec3,vecd} P, {float,vec2,vec3} dPdx,
{float,vec2,vec3} dPdy)

float textureProjGrad(sampler{1D,2D[Rect]}Shadow sampler,
vecd P, {float,vec2} dPdx, {float,vec2} dPdy)

Texture lookup projectively and with explicit gradient
as in textureProjGrad, as well as with offset as in
textureOffset.

gvecd textureProjGradOffset(
gsampler{1D,2D[Rect],3D} sampler, vec{2,3,4} P,
{float,vec2,vec3} dPdy, {float,vec2,vec3} dPdy,
{int,ivec2,ivec3} offset)

float textureProjGradOffset(
sampler{1D,2D[Rect|Shadow} sampler, vec4 P,
{float,vec2} dPdy, {float,vec2} dPdy, {ivec2,int,vec2} offset)

Texture Gather Instructions [8.9.3]

These functions take components of a floating-point
vector operand as a texture coordinate, determine
a set of four texels to sample from the base level of
detail of the specified texture image, and return one
component from each texel in a four-component
result vector.

gvecd textureGather(
gsampler{2D[Array,Rect],Cube[Array]} sampler,
{vec2,vec3,vecd} P, int comp])

vec4 textureGather(
sampler{2D[Array,Rect],Cube[Array]}Shadow sampler,
{vec2,vec3,vecd} P, float refZ)

Texture gather as in textureGather by offset as
described in textureOffset except minimum and
maximum offset values are given by

{MIN, MAX}_PROGRAM_TEXTURE_GATHER_OFFSET.

gvecd textureGatherOffset(gsampler2D[Array,Rect] sampler,
{vec2,vec3} P, ivec2 offset [, int comp])

vecd textureGatherOffset(
sampler2D[Array,Rect]Shadow sampler,
{vec2,vec3} P, float refZ, ivec2 offset)

Texture gather as in textureGatherOffset except offsets
determines location of the four texels to sample.

gvech textureGatherOffsets(gsampler2D[Array,Rect] sampler,
{vec2,vec3} P, ivec2 offsets[4] [, int comp])

vecd textureGatherOffsets(
sampler2D[Array,Rect]Shadow sampler,
{vec2,vec3} P, float refZ, ivec2 offsets[4])

www.khronos.org/opengl

OpenGL API and OpenGL Shading Language Reference Card Index

The following index shows each item included on this card along with the page on which it is described. The color of the row in the table below is the color of the pane to which you should refer..

A
ActiveShaderProgram
ActiveTexture
AttachShader
Android Platform

B
BeginConditionalRender
BeginQuery
BeginQueryIndexed
BeginTransformFeedback
BindAttribLocation
BindBuffer*
BindFragDatalocation*
BindFramebuffer
BindImageTexture(s)
BindProgramPipeline
BindRenderbuffer
BindSampler(s)
BindTexture*
BindTransformFeedback
BindVertex*

BlendColor
BlendEquation*
BlendFunc*
BlitfNamed]Framebuffer
BufferStorage
Buffer[Sub]Data

C
Check[Named]FramebufferStatus
ClampColor

Clear

ClearBuffer[Sub]Data
ClearBuffer*

ClearColor

ClearDepth*
ClearNamedBuffer[Sub]Data
ClearNamedFramebuffer*
ClearStencil

ClearTeximage
ClearTexSublmage
ClientWaitSync

ClipControl

ColorMask*

Command Syntax
CompileShader
CompressedTex[Sub]image*
CompressedTextureSublmage*
CopyBufferSubData
CopylmageSubData
CopyNamedBufferSubData
CopyTex[Sub]Image*
CopyTextureSublmage*
CreateBuffers
CreateFramebuffers
CreateProgram
CreateProgramPipelines
CreateQueries
CreateRenderbuffers
CreateSamplers
CreateShader
CreateShaderProgramv
CreateTextures
CreateTransformFeedbacks
CreateVertexArrays

CullFace

D

DebugMessage*
DeleteBuffers
DeleteFramebuffers
DeleteProgram*
DeleteProgramPipelines
DeleteQueries
DeleteRenderbuffers
DeleteSamplers
DeleteShader
DeleteSync
DeleteTextures
DeleteTransformFeedbacks
DeleteVertexArrays

PR OO UNNBEBNRERUOROGOUROOWV

UBUNNREPENBRERNRPBRERPRWOWWROIDR WWRRPOODURAERDIDOIRL OO R OO S

BUONRPRPNONBRRPNONNDROD

DepthFunc

DepthMask

DepthRange*

DetachShader
DisableVertexArrayAttrib
DisableVertexAttribArray
DispatchCompute*
DrawArrays[Indirect]
DrawArraysInstanced[Baselnstance]
DrawBuffer(s)

DrawElements*
DrawRangeElements[BaseVertex]
DrawTransformFeedback*

E
EnableVertexArrayAttrib
EnableVertexAttribArray
EndConditionalRender
EndQuery
EndQuery[Indexed]
EndTransformFeedback
Errors

F
Fences

FenceSync

Finish

Flatshading

Flush
FlushMapped[Named]BufferRange
FramebufferParameteri
FramebufferRenderbuffer
FramebufferTexture*

FrontFace

G

GenBuffers
Generate[Texture]Mipmap
GenFramebuffers
GenProgramPipelines
GenQueries
GenRenderbuffers
GenSamplers

GenTextures
GenTransformFeedbacks
GenVertexArrays
GetActiveAtomicCounterBufferiv
GetActiveAttrib
GetActiveSubroutine®
GetActiveUniform*
GetAttachedShaders
GetAttribLocation
GetBoolean*
GetBufferParameteri[64]v
GetBufferPointerv
GetBufferSubData
GetCompressedTex*
GetDebugMessagelog
GetDouble*

GetError

GetFloat*

GetFragData*
GetFramebuffer[Attachment]Parameter*
GetGraphicsResetStatus
Getlnteger[64]v
Getlnteger64i_v
Getlnteger64v
Getlntegeri_v

Getlntegerv

Getlntegerv
Getlnternalformativ*
GetMultisamplefv
GetNamedBuffer*
GetNamedFramebuffer*
GetNamedRenderbufferParameteriv
GetnCompressedTexImage
GetnTexImage
GetnUniform{f d i ui}v
GetObject[Ptr]Label
GetPointerv
GetProgramBinary
GetProgramInfolog

o))

[C T, INT, < WT, BT, BT BT, T, Y ST, Y

(8 B N N N NG

NNODOINWWARRRPRUNODR DR, P, RUOODR, ODDWERRPPLODUNNNUNBUNNRERLRNDWERE

GetPrograminterfaceiv
GetProgramiv
GetProgramPipeline*
GetProgramResource*
GetProgramStageiv
GetQuery*
GetRenderbufferParameteriv
GetSamplerParameter*
GetShaderInfolog
GetShaderiv
GetShaderPrecisionFormat
GetShaderSource

GetString

GetSubroutinelndex
GetSubroutineUniformLocation
GetSynciv

GetTexImage
GetTex[Level]Parameter*
GetTexturelmage
GetTextureLevelParameter{i fjv
GetTextureParameter*
GetTextureSublmage
GetTransformFeedback*
GetTransformFeedbackVarying
GetUniform*

GetVertexArray*
GetVertexAttrib*

H-1

Hint

InvalidateBufferData
InvalidateBufferSubData
InvalidateFramebuffer
InvalidateNamedFramebuffer*
InvalidateSubFramebuffer
InvalidateTeximage
InvalidateTexSublmage
IsBuffer

IsFramebuffer
IsProgram[Pipeline]

IsQuery

IsRenderbuffer

IsSampler

IsShader

IsSync

IsTexture
IsTransformFeedback
IsVertexArray

L

LineWidth

LinkProgram

M

Macros

MapBuffer[Range]
MapNamedBuffer*
MemoryBarrier
MemoryBarrierByRegion
MinSampleShading
MultiDrawArrays*
MultiDrawElements*
Multisampling

N

NamedBuffer[Sub]Data
NamedBufferStorage
NamedFramebufferDrawBuffer(s)
NamedFramebufferParameteri
NamedFramebufferReadBuffer
NamedFramebufferRenderbuffer
NamedFramebufferTexture*
NamedRenderbufferStorage*
o}

ObjectLabel

ObjectPtrLabel

OpenGL Pipeline

Operations and Constructors
Operators and Expressions

P

PatchParameterfv
PatchParameteri

(=2}
U N U TWWWWWWRNNUYNNONNONRNONNDER,NRNDNND N

PBUNRPRNERNAERLREROTOOR PO

VUL UNN R PO

NN N

PauseTransformFeedback
PixelStorefi f}
PointParameter*
PointSize

PolygonMode
PolygonOffset
PolygonOffsetClamp
PopDebugGroup
Preprocessor
PrimitiveRestartindex
ProgramBinary
ProgramParameteri
ProgramUniform*
ProvokingVertex
PushDebugGroup

QR

Qualifiers

QueryCounter
ReadBuffer

ReadnPixels

ReadPixels
ReleaseShaderCompiler
RenderbufferStorage
RenderbufferStorageMultisample
ResumeTransformFeedback

S

SampleCoverage
SampleMaski
SamplerParameter*

Scissor

ShaderBinary
ShaderSource
ShaderStorageBlockBinding
Shading Language
SpecializeShader

State and State Requests
StencilFunc*

StencilMask*

StencilOp*

Synchronization
Synchronous Debug Output

T
TexBuffer[Range]
TexImage*[Multisample]
TexParameter*
TexStorage*[Multisample]
TexSublmage*

TextureBarrier
TextureBuffer[Range]
TextureParameter*
TextureStorage*[Multisample]
TextureSublmage*
TextureView

Timer Queries
TransformFeedbackBufferBase
TransformFeedbackBufferRange
TransformFeedbackVarying(s)
Types

U

Uniform*
UniformBlockBinding
UniformMatrix*
UniformSubroutinesuiv
Unmap[Named]Buffer
UseProgram[Stages]

V-w
ValidateProgram[Pipeline]
Variables, built-in
VertexArrayAttrib*Format
VertexArrayAttribBindin
VertexArrayBindingDivisor
VertexArrayElementBuffer
VertexArrayVertexBuffer(s)
VertexAttrib*
VertexBindingDivisor
Viewport*

WaitSync

UMM NNUIOOoOUU UGN U

it
N
15}

w

O UUUTERE WWRWWE WD Wwww

s B PO O

=
o

S

LR A B L IS S O, B O I

OpenGL is a registered trademark of Silicon Graphics International, used under license by Khronos Group.
The Khronos Group is an industry consortium creating open standards for the authoring and acceleration
of parallel computing, graphics and dynamic media on a wide variety of platforms and devices.

See www.khronos.org to learn more about the Khronos Group.

See www.opengl.org to learn more about OpenGL.

